Goto

Collaborating Authors

 Wang, Tianyi


The coupling effect between the environment and strategies drives the emergence of group cooperation

arXiv.org Artificial Intelligence

The coupling effect between the environment and strategies drives the emergence of group cooperation Changyan Di, Qingguo Zhou, Jun Shen, Jinqiang Wang, Rui Zhou, Tianyi Wang The coupling effect between macro environment and individual behavior is the key factor to solve the social dilemma. In a static environment, rewards of different strategies are compared simultaneously, leading to a social dilemma due to the higher payoff of defection compared to cooperation. However, when individuals are placed in a dynamic environment that is coupled with their actions, we find that the expected payoffs of different strategies are not fixed but undergo dynamic changes. The higher expected payoff of defection can be diluted over time due to environmental degradation caused by an excessive number of defectors, while cooperation may become the dominant strategy if positively reinforced by environmental feedback. Group cooperation emerges as a direct result of a mutually reinforcing positive feedback loop among the environment, immediate rewards, and individual actions (or group states). Despite the agents' lack of awareness regarding the macro-level context, they possess the ability to astutely discern the inflection point of the environment solely through their rewards. This pivotal moment prompts agents to experience a surge in immediate rewards, thereby triggering a positive feedback loop among the environment, their rewards, and their current actions. Consequently, cooperation emerges within the group.


HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection

arXiv.org Artificial Intelligence

We present the HIT-UAV dataset, a high-altitude infrared thermal dataset for object detection applications on Unmanned Aerial Vehicles (UAVs). The dataset comprises 2,898 infrared thermal images extracted from 43,470 frames in hundreds of videos captured by UAVs in various scenarios including schools, parking lots, roads, and playgrounds. Moreover, the HIT-UAV provides essential flight data for each image, such as flight altitude, camera perspective, date, and daylight intensity. For each image, we have manually annotated object instances with bounding boxes of two types (oriented and standard) to tackle the challenge of significant overlap of object instances in aerial images. To the best of our knowledge, the HIT-UAV is the first publicly available high-altitude UAV-based infrared thermal dataset for detecting persons and vehicles. We have trained and evaluated well-established object detection algorithms on the HIT-UAV. Our results demonstrate that the detection algorithms perform exceptionally well on the HIT-UAV compared to visual light datasets since infrared thermal images do not contain significant irrelevant information about objects. We believe that the HIT-UAV will contribute to various UAV-based applications and researches.


Deep Convolutional Pooling Transformer for Deepfake Detection

arXiv.org Artificial Intelligence

Recently, Deepfake has drawn considerable public attention due to security and privacy concerns in social media digital forensics. As the wildly spreading Deepfake videos on the Internet become more realistic, traditional detection techniques have failed in distinguishing between real and fake. Most existing deep learning methods mainly focus on local features and relations within the face image using convolutional neural networks as a backbone. However, local features and relations are insufficient for model training to learn enough general information for Deepfake detection. Therefore, the existing Deepfake detection methods have reached a bottleneck to further improve the detection performance. To address this issue, we propose a deep convolutional Transformer to incorporate the decisive image features both locally and globally. Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy. Moreover, we employ the barely discussed image keyframes in model training for performance improvement and visualize the feature quantity gap between the key and normal image frames caused by video compression. We finally illustrate the transferability with extensive experiments on several Deepfake benchmark datasets. The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.


XAIR: A Framework of Explainable AI in Augmented Reality

arXiv.org Artificial Intelligence

Explainable AI (XAI) has established itself as an important component of AI-driven interactive systems. With Augmented Reality (AR) becoming more integrated in daily lives, the role of XAI also becomes essential in AR because end-users will frequently interact with intelligent services. However, it is unclear how to design effective XAI experiences for AR. We propose XAIR, a design framework that addresses "when", "what", and "how" to provide explanations of AI output in AR. The framework was based on a multi-disciplinary literature review of XAI and HCI research, a large-scale survey probing 500+ end-users' preferences for AR-based explanations, and three workshops with 12 experts collecting their insights about XAI design in AR. XAIR's utility and effectiveness was verified via a study with 10 designers and another study with 12 end-users. XAIR can provide guidelines for designers, inspiring them to identify new design opportunities and achieve effective XAI designs in AR.


Recursive deep learning framework for forecasting the decadal world economic outlook

arXiv.org Artificial Intelligence

Gross domestic product (GDP) is the most widely used indicator in macroeconomics and the main tool for measuring a country's economic ouput. Due to the diversity and complexity of the world economy, a wide range of models have been used, but there are challenges in making decadal GDP forecasts given unexpected changes such as pandemics and wars. Deep learning models are well suited for modeling temporal sequences have been applied for time series forecasting. In this paper, we develop a deep learning framework to forecast the GDP growth rate of the world economy over a decade. We use Penn World Table as the source of our data, taking data from 1980 to 2019, across 13 countries, such as Australia, China, India, the United States and so on. We test multiple deep learning models, LSTM, BD-LSTM, ED-LSTM and CNN, and compared their results with the traditional time series model (ARIMA,VAR). Our results indicate that ED-LSTM is the best performing model. We present a recursive deep learning framework to predict the GDP growth rate in the next ten years. We predict that most countries will experience economic growth slowdown, stagnation or even recession within five years; only China, France and India are predicted to experience stable, or increasing, GDP growth.


Hierarchically Modeling Micro and Macro Behaviors via Multi-Task Learning for Conversion Rate Prediction

arXiv.org Artificial Intelligence

Conversion Rate (\emph{CVR}) prediction in modern industrial e-commerce platforms is becoming increasingly important, which directly contributes to the final revenue. In order to address the well-known sample selection bias (\emph{SSB}) and data sparsity (\emph{DS}) issues encountered during CVR modeling, the abundant labeled macro behaviors ($i.e.$, user's interactions with items) are used. Nonetheless, we observe that several purchase-related micro behaviors ($i.e.$, user's interactions with specific components on the item detail page) can supplement fine-grained cues for \emph{CVR} prediction. Motivated by this observation, we propose a novel \emph{CVR} prediction method by Hierarchically Modeling both Micro and Macro behaviors ($HM^3$). Specifically, we first construct a complete user sequential behavior graph to hierarchically represent micro behaviors and macro behaviors as one-hop and two-hop post-click nodes. Then, we embody $HM^3$ as a multi-head deep neural network, which predicts six probability variables corresponding to explicit sub-paths in the graph. They are further combined into the prediction targets of four auxiliary tasks as well as the final $CVR$ according to the conditional probability rule defined on the graph. By employing multi-task learning and leveraging the abundant supervisory labels from micro and macro behaviors, $HM^3$ can be trained end-to-end and address the \emph{SSB} and \emph{DS} issues. Extensive experiments on both offline and online settings demonstrate the superiority of the proposed $HM^3$ over representative state-of-the-art methods.


Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue Representation Learning

arXiv.org Machine Learning

Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive. In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks where the training objectives are given naturally according to the nature of the utterance and the structure of the multi-role conversation. Meanwhile, in order to locate essential information for dialogue summarization/extraction, the pretraining process enables external knowledge integration. The proposed fine-tuned pretraining mechanism is comprehensively evaluated via three different dialogue datasets along with a number of downstream dialogue-mining tasks. Result shows that the proposed pretraining mechanism significantly contributes to all the downstream tasks without discrimination to different encoders.