Goto

Collaborating Authors

 Wang, Tianlu


Learning to Plan & Reason for Evaluation with Thinking-LLM-as-a-Judge

arXiv.org Artificial Intelligence

LLM-as-a-Judge models generate chain-of-thought (CoT) sequences intended to capture the step-bystep reasoning process that underlies the final evaluation of a response. However, due to the lack of human annotated CoTs for evaluation, the required components and structure of effective reasoning traces remain understudied. Consequently, previous approaches often (1) constrain reasoning traces to hand-designed components, such as a list of criteria, reference answers, or verification questions and (2) structure them such that planning is intertwined with the reasoning for evaluation. In this work, we propose EvalPlanner, a preference optimization algorithm for Thinking-LLM-as-a-Judge that first generates an unconstrained evaluation plan, followed by its execution, and then the final judgment. In a self-training loop, EvalPlanner iteratively optimizes over synthetically constructed evaluation plans and executions, leading to better final verdicts. Our method achieves a new state-of-the-art performance for generative reward models on RewardBench (with a score of 93.9), despite being trained on fewer amount of, and synthetically generated, preference pairs. Additional experiments on other benchmarks like RM-Bench, JudgeBench, and FollowBenchEval further highlight the utility of both planning and reasoning for building robust LLM-as-a-Judge reasoning models.


Calibrate to Discriminate: Improve In-Context Learning with Label-Free Comparative Inference

arXiv.org Artificial Intelligence

While in-context learning with large language models (LLMs) has shown impressive performance, we have discovered a unique miscalibration behavior where both correct and incorrect predictions are assigned the same level of confidence. We refer to this phenomenon as indiscriminate miscalibration. We found that traditional calibration metrics, such as Expected Calibrated Errors (ECEs), are unable to capture this behavior effectively. To address this issue, we propose new metrics to measure the severity of indiscriminate miscalibration. Additionally, we develop a novel in-context comparative inference method to alleviate miscalibrations and improve classification performance. Through extensive experiments on five datasets, we demonstrate that our proposed method can achieve more accurate and calibrated predictions compared to regular zero-shot and few-shot prompting.


Efficient Tool Use with Chain-of-Abstraction Reasoning

arXiv.org Artificial Intelligence

To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.


PathFinder: Guided Search over Multi-Step Reasoning Paths

arXiv.org Artificial Intelligence

With recent advancements in large language models, methods like chain-of-thought prompting to elicit reasoning chains have been shown to improve results on reasoning tasks. However, tasks that require multiple steps of reasoning still pose significant challenges to state-of-the-art models. Drawing inspiration from the beam search algorithm, we propose PathFinder, a tree-search-based reasoning path generation approach. It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding, enabled by varying sampling methods and parameters. Using constrained reasoning, PathFinder integrates novel quality constraints, pruning, and exploration methods to enhance the efficiency and the quality of generation. Moreover, it includes scoring and ranking features to improve candidate selection. Our approach outperforms competitive baselines on three complex arithmetic and commonsense reasoning tasks by 6% on average. Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.


Gender Biases in Automatic Evaluation Metrics for Image Captioning

arXiv.org Artificial Intelligence

Model-based evaluation metrics (e.g., CLIPScore and GPTScore) have demonstrated decent correlations with human judgments in various language generation tasks. However, their impact on fairness remains largely unexplored. It is widely recognized that pretrained models can inadvertently encode societal biases, thus employing these models for evaluation purposes may inadvertently perpetuate and amplify biases. For example, an evaluation metric may favor the caption "a woman is calculating an account book" over "a man is calculating an account book," even if the image only shows male accountants. In this paper, we conduct a systematic study of gender biases in model-based automatic evaluation metrics for image captioning tasks. We start by curating a dataset comprising profession, activity, and object concepts associated with stereotypical gender associations. Then, we demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations, as well as the propagation of biases to generation models through reinforcement learning. Finally, we present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments. Our dataset and framework lay the foundation for understanding the potential harm of model-based evaluation metrics, and facilitate future works to develop more inclusive evaluation metrics.


Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

arXiv.org Artificial Intelligence

We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.


Shepherd: A Critic for Language Model Generation

arXiv.org Artificial Intelligence

As large language models improve, there is increasing interest in techniques that leverage these models' capabilities to refine their own outputs. In this work, we introduce Shepherd, a language model specifically tuned to critique responses and suggest refinements, extending beyond the capabilities of an untuned model to identify diverse errors and provide suggestions to remedy them. At the core of our approach is a high quality feedback dataset, which we curate from community feedback and human annotations. Even though Shepherd is small (7B parameters), its critiques are either equivalent or preferred to those from established models including ChatGPT. Using GPT-4 for evaluation, Shepherd reaches an average win-rate of 53-87% compared to competitive alternatives. In human evaluation, Shepherd strictly outperforms other models and on average closely ties with ChatGPT.


ALERT: Adapting Language Models to Reasoning Tasks

arXiv.org Artificial Intelligence

Current large language models can perform reasonably well on complex tasks that require step-by-step reasoning with few-shot learning. Are these models applying reasoning skills they have learnt during pre-training and reason outside of their training context, or are they simply memorizing their training corpus at finer granularity and have learnt to better understand their context? To tease apart these possibilities, we introduce ALERT, a benchmark and suite of analyses for assessing language models' reasoning ability comparing pre-trained and finetuned models on complex tasks that require reasoning skills to solve. ALERT provides a test bed to asses any language model on fine-grained reasoning skills, which spans over 20 datasets and covers 10 different reasoning skills. We leverage ALERT to further investigate the role of finetuning. With extensive empirical analysis we find that language models learn more reasoning skills such as textual entailment, abductive reasoning, and analogical reasoning during finetuning stage compared to pretraining state. We also find that when language models are finetuned they tend to overfit to the prompt template, which hurts the robustness of models causing generalization problems.


Understanding In-Context Learning via Supportive Pretraining Data

arXiv.org Artificial Intelligence

In-context learning (ICL) improves language models' performance on a variety of NLP tasks by simply demonstrating a handful of examples at inference time. It is not well understood why ICL ability emerges, as the model has never been specifically trained on such demonstrations. Unlike prior work that explores implicit mechanisms behind ICL, we study ICL via investigating the pretraining data. Specifically, we first adapt an iterative, gradient-based approach to find a small subset of pretraining data that supports ICL. We observe that a continued pretraining on this small subset significantly improves the model's ICL ability, by up to 18%. We then compare the supportive subset constrastively with random subsets of pretraining data and discover: (1) The supportive pretraining data to ICL do not have a higher domain relevance to downstream tasks. (2) The supportive pretraining data have a higher mass of rarely occurring, long-tail tokens. (3) The supportive pretraining data are challenging examples where the information gain from long-range context is below average, indicating learning to incorporate difficult long-range context encourages ICL. Our work takes a first step towards understanding ICL via analyzing instance-level pretraining data. Our insights have a potential to enhance the ICL ability of language models by actively guiding the construction of pretraining data in the future.


Open-Domain Text Evaluation via Meta Distribution Modeling

arXiv.org Artificial Intelligence

Recent advances in open-domain text generation models powered by large pre-trained language models (LLMs) have achieved remarkable performance. However, evaluating and controlling these models for desired attributes remains a challenge, as traditional reference-based metrics such as BLEU, ROUGE, and METEOR are insufficient for open-ended generation tasks. Similarly, while trainable discriminator-based evaluation metrics show promise, obtaining high-quality training data is a non-trivial task. In this paper, we introduce a novel approach to evaluate open-domain generation - the Meta-Distribution Methods (MDM). Drawing on the correlation between the rising parameter counts and the improving performance of LLMs, MDM creates a mapping from the contrast of two probabilistic distributions -- one known to be superior to the other -- to quality measures, which can be viewed as a distribution of distributions i.e. Meta-Distribution. We investigate MDM for open-domain text generation evaluation under two paradigms: 1) \emph{Generative} MDM, which leverages the Meta-Distribution Methods to generate in-domain negative samples for training discriminator-based metrics; 2) \emph{Discriminative} MDM, which directly uses distribution discrepancies between two language models for evaluation. Our experiments on multi-turn dialogue and factuality in abstractive summarization demonstrate that MDMs correlate better with human judgment than existing automatic evaluation metrics on both tasks, highlighting the strong performance and generalizability of such methods.