Not enough data to create a plot.
Try a different view from the menu above.
Wang, Tan
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Qin, Chengwei, Xia, Wenhan, Wang, Tan, Jiao, Fangkai, Hu, Yuchen, Ding, Bosheng, Chen, Ruirui, Joty, Shafiq
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
Unified Text-to-Image Generation and Retrieval
Qu, Leigang, Li, Haochuan, Wang, Tan, Wang, Wenjie, Li, Yongqi, Nie, Liqiang, Chua, Tat-Seng
How humans can efficiently and effectively acquire images has always been a perennial question. A typical solution is text-to-image retrieval from an existing database given the text query; however, the limited database typically lacks creativity. By contrast, recent breakthroughs in text-to-image generation have made it possible to produce fancy and diverse visual content, but it faces challenges in synthesizing knowledge-intensive images. In this work, we rethink the relationship between text-to-image generation and retrieval and propose a unified framework in the context of Multimodal Large Language Models (MLLMs). Specifically, we first explore the intrinsic discriminative abilities of MLLMs and introduce a generative retrieval method to perform retrieval in a training-free manner. Subsequently, we unify generation and retrieval in an autoregressive generation way and propose an autonomous decision module to choose the best-matched one between generated and retrieved images as the response to the text query. Additionally, we construct a benchmark called TIGeR-Bench, including creative and knowledge-intensive domains, to standardize the evaluation of unified text-to-image generation and retrieval. Extensive experimental results on TIGeR-Bench and two retrieval benchmarks, i.e., Flickr30K and MS-COCO, demonstrate the superiority and effectiveness of our proposed method.
DisCo: Disentangled Control for Realistic Human Dance Generation
Wang, Tan, Li, Linjie, Lin, Kevin, Zhai, Yuanhao, Lin, Chung-Ching, Yang, Zhengyuan, Zhang, Hanwang, Liu, Zicheng, Wang, Lijuan
Generative AI has made significant strides in computer vision, particularly in text-driven image/video synthesis (T2I/T2V). Despite the notable advancements, it remains challenging in human-centric content synthesis such as realistic dance generation. Current methodologies, primarily tailored for human motion transfer, encounter difficulties when confronted with real-world dance scenarios (e.g., social media dance) which require to generalize across a wide spectrum of poses and intricate human details. In this paper, we depart from the traditional paradigm of human motion transfer and emphasize two additional critical attributes for the synthesis of human dance content in social media contexts: (i) Generalizability: the model should be able to generalize beyond generic human viewpoints as well as unseen human subjects, backgrounds, and poses; (ii) Compositionality: it should allow for composition of seen/unseen subjects, backgrounds, and poses from different sources seamlessly. To address these challenges, we introduce DisCo, which includes a novel model architecture with disentangled control to improve the compositionality of dance synthesis, and an effective human attribute pre-training for better generalizability to unseen humans. Extensive qualitative and quantitative results demonstrate that DisCo can generate high-quality human dance images and videos with diverse appearances and flexible motions. Code, demo, video and visualization are available at: https://disco-dance.github.io/.
Explaining Language Models' Predictions with High-Impact Concepts
Zhao, Ruochen, Joty, Shafiq, Wang, Yongjie, Wang, Tan
The emergence of large-scale pretrained language models has posed unprecedented challenges in deriving explanations of why the model has made some predictions. Stemmed from the compositional nature of languages, spurious correlations have further undermined the trustworthiness of NLP systems, leading to unreliable model explanations that are merely correlated with the output predictions. To encourage fairness and transparency, there exists an urgent demand for reliable explanations that allow users to consistently understand the model's behavior. In this work, we propose a complete framework for extending concept-based interpretability methods to NLP. Specifically, we propose a post-hoc interpretability method for extracting predictive high-level features (concepts) from the pretrained model's hidden layer activations. We optimize for features whose existence causes the output predictions to change substantially, \ie generates a high impact. Moreover, we devise several evaluation metrics that can be universally applied. Extensive experiments on real and synthetic tasks demonstrate that our method achieves superior results on {predictive impact}, usability, and faithfulness compared to the baselines.
Counterfactual Zero-Shot and Open-Set Visual Recognition
Yue, Zhongqi, Wang, Tan, Zhang, Hanwang, Sun, Qianru, Hua, Xian-Sheng
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes'', the sample is from a certain class, and ``no'' otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.