Goto

Collaborating Authors

 Wang, Suzhen


FlowFace: Semantic Flow-guided Shape-aware Face Swapping

arXiv.org Artificial Intelligence

In this work, we propose a semantic flow-guided two-stage framework for shape-aware face swapping, namely FlowFace. Unlike most previous methods that focus on transferring the source inner facial features but neglect facial contours, our FlowFace can transfer both of them to a target face, thus leading to more realistic face swapping. Concretely, our FlowFace consists of a face reshaping network and a face swapping network. The face reshaping network addresses the shape outline differences between the source and target faces. It first estimates a semantic flow (i.e., face shape differences) between the source and the target face, and then explicitly warps the target face shape with the estimated semantic flow. After reshaping, the face swapping network generates inner facial features that exhibit the identity of the source face. We employ a pre-trained face masked autoencoder (MAE) to extract facial features from both the source face and the target face. In contrast to previous methods that use identity embedding to preserve identity information, the features extracted by our encoder can better capture facial appearances and identity information. Then, we develop a cross-attention fusion module to adaptively fuse inner facial features from the source face with the target facial attributes, thus leading to better identity preservation. Extensive quantitative and qualitative experiments on in-the-wild faces demonstrate that our FlowFace outperforms the state-of-the-art significantly.


Imbalance-XGBoost: Leveraging Weighted and Focal Losses for Binary Label-Imbalanced Classification with XGBoost

arXiv.org Machine Learning

The paper presents Imbalance-XGBoost, a Python package that combines the powerful XGBoost software with weighted and focal losses to tackle binary label-imbalanced classification tasks. Though a small-scale program in terms of size, the package is, to the best of the authors' knowledge, the first of its kind which provides an integrated implementation for the two losses on XGBoost and brings a general-purpose extension on XGBoost for label-imbalanced scenarios. In this paper, the design and usage of the package are described with exemplar code listings, and its convenience to be integrated into Python-driven Machine Learning projects is illustrated. Furthermore, as the first- and second-order derivatives of the loss functions are essential for the implementations, the algebraic derivation is discussed and it can be deemed as a separate algorithmic contribution. The performances of the algorithms implemented in the package are empirically evaluated on Parkinson's disease classification data set, and multiple state-of-the-art performances have been observed. Given the scalable nature of XGBoost, the package has great potentials to be applied to real-life binary classification tasks, which are usually of large-scale and label-imbalanced.


Robust Propensity Score Computation Method based on Machine Learning with Label-corrupted Data

arXiv.org Machine Learning

In biostatistics, propensity score is a common approach to analyze the imbalance of covariate and process confounding covariates to eliminate differences between groups. While there are an abundant amount of methods to compute propensity score, a common issue of them is the corrupted labels in the dataset. For example, the data collected from the patients could contain samples that are treated mistakenly, and the computing methods could incorporate them as a misleading information. In this paper, we propose a Machine Learning-based method to handle the problem. Specifically, we utilize the fact that the majority of sample should be labeled with the correct instance and design an approach to first cluster the data with spectral clustering and then sample a new dataset with a distribution processed from the clustering results. The propensity score is computed by Xgboost, and a mathematical justification of our method is provided in this paper. The experimental results illustrate that xgboost propensity scores computing with the data processed by our method could outperform the same method with original data, and the advantages of our method increases as we add some artificial corruptions to the dataset. Meanwhile, the implementation of xgboost to compute propensity score for multiple treatments is also a pioneering work in the area.


$l_1$-regularized Outlier Isolation and Regression

arXiv.org Machine Learning

This paper proposed a new regression model called $l_1$-regularized outlier isolation and regression (LOIRE) and a fast algorithm based on block coordinate descent to solve this model. Besides, assuming outliers are gross errors following a Bernoulli process, this paper also presented a Bernoulli estimate model which, in theory, should be very accurate and robust due to its complete elimination of affections caused by outliers. Though this Bernoulli estimate is hard to solve, it could be approximately achieved through a process which takes LOIRE as an important intermediate step. As a result, the approximate Bernoulli estimate is a good combination of Bernoulli estimate's accuracy and LOIRE regression's efficiency with several simulations conducted to strongly verify this point. Moreover, LOIRE can be further extended to realize robust rank factorization which is powerful in recovering low-rank component from massive corruptions. Extensive experimental results showed that the proposed method outperforms state-of-the-art methods like RPCA and GoDec in the aspect of computation speed with a competitive performance.