Goto

Collaborating Authors

 Wang, Songlin


A Preference-oriented Diversity Model Based on Mutual-information in Re-ranking for E-commerce Search

arXiv.org Artificial Intelligence

Re-ranking is a process of rearranging ranking list to more effectively meet user demands by accounting for the interrelationships between items. Existing methods predominantly enhance the precision of search results, often at the expense of diversity, leading to outcomes that may not fulfill the varied needs of users. Conversely, methods designed to promote diversity might compromise the precision of the results, failing to satisfy the users' requirements for accuracy. To alleviate the above problems, this paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI), which consider both accuracy and diversity in the re-ranking process. Specifically, PODM-MI adopts Multidimensional Gaussian distributions based on variational inference to capture users' diversity preferences with uncertainty. Then we maximize the mutual information between the diversity preferences of the users and the candidate items using the maximum variational inference lower bound to enhance their correlations. Subsequently, we derive a utility matrix based on the correlations, enabling the adaptive ranking of items in line with user preferences and establishing a balance between the aforementioned objectives. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of PODM-MI, and we have successfully deployed PODM-MI on an e-commerce search platform.


A Multi-Granularity Matching Attention Network for Query Intent Classification in E-commerce Retrieval

arXiv.org Artificial Intelligence

Query intent classification, which aims at assisting customers to find desired products, has become an essential component of the e-commerce search. Existing query intent classification models either design more exquisite models to enhance the representation learning of queries or explore label-graph and multi-task to facilitate models to learn external information. However, these models cannot capture multi-granularity matching features from queries and categories, which makes them hard to mitigate the gap in the expression between informal queries and categories. This paper proposes a Multi-granularity Matching Attention Network (MMAN), which contains three modules: a self-matching module, a char-level matching module, and a semantic-level matching module to comprehensively extract features from the query and a query-category interaction matrix. In this way, the model can eliminate the difference in expression between queries and categories for query intent classification. We conduct extensive offline and online A/B experiments, and the results show that the MMAN significantly outperforms the strong baselines, which shows the superiority and effectiveness of MMAN. MMAN has been deployed in production and brings great commercial value for our company.


ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for E-Commerce Product Search

arXiv.org Artificial Intelligence

In this paper, we propose a robust multilingual model to improve the quality of search results. Our model not only leverage the processed class-balanced dataset, but also benefit from multitask pre-training that leads to more general representations. In pre-training stage, we adopt mlm task, classification task and contrastive learning task to achieve considerably performance. In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop) to improve the model's generalization and robustness. Moreover, we use a multi-granular semantic unit to discover the queries and products textual metadata for enhancing the representation of the model. Our approach obtained competitive results and ranked top-8 in three tasks. We release the source code and pre-trained models associated with this work.


From Semantic Retrieval to Pairwise Ranking: Applying Deep Learning in E-commerce Search

arXiv.org Artificial Intelligence

We introduce deep learning models to the two most important stages in product search at JD.com, one of the largest e-commerce platforms in the world. Specifically, we outline the design of a deep learning system that retrieves semantically relevant items to a query within milliseconds, and a pairwise deep re-ranking system, which learns subtle user preferences. Compared to traditional search systems, the proposed approaches are better at semantic retrieval and personalized ranking, achieving significant improvements.