Goto

Collaborating Authors

 Wang, Shuting


Harness Local Rewards for Global Benefits: Effective Text-to-Video Generation Alignment with Patch-level Reward Models

arXiv.org Artificial Intelligence

The emergence of diffusion models (DMs) has significantly improved the quality of text-to-video generation models (VGMs). However, current VGM optimization primarily emphasizes the global quality of videos, overlooking localized errors, which leads to suboptimal generation capabilities. To address this issue, we propose a post-training strategy for VGMs, HALO, which explicitly incorporates local feedback from a patch reward model, providing detailed and comprehensive training signals with the video reward model for advanced VGM optimization. To develop an effective patch reward model, we distill GPT-4o to continuously train our video reward model, which enhances training efficiency and ensures consistency between video and patch reward distributions. Furthermore, to harmoniously integrate patch rewards into VGM optimization, we introduce a granular DPO (Gran-DPO) algorithm for DMs, allowing collaborative use of both patch and video rewards during the optimization process. Experimental results indicate that our patch reward model aligns well with human annotations and HALO substantially outperforms the baselines across two evaluation methods. Further experiments quantitatively prove the existence of patch defects, and our proposed method could effectively alleviate this issue.


OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain

arXiv.org Artificial Intelligence

As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in \href{https://github.com/RUC-NLPIR/OmniEval}{https://github.com/RUC-NLPIR/OmniEval}.


RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.


DomainRAG: A Chinese Benchmark for Evaluating Domain-specific Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) offers a promising solution to address various limitations of Large Language Models (LLMs), such as hallucination and difficulties in keeping up with real-time updates. This approach is particularly critical in expert and domain-specific applications where LLMs struggle to cover expert knowledge. Therefore, evaluating RAG models in such scenarios is crucial, yet current studies often rely on general knowledge sources like Wikipedia to assess the models' abilities in solving common-sense problems. In this paper, we evaluated LLMs by RAG settings in a domain-specific context, college enrollment. We identified six required abilities for RAG models, including the ability in conversational RAG, analyzing structural information, faithfulness to external knowledge, denoising, solving time-sensitive problems, and understanding multi-document interactions. Each ability has an associated dataset with shared corpora to evaluate the RAG models' performance. We evaluated popular LLMs such as Llama, Baichuan, ChatGLM, and GPT models. Experimental results indicate that existing closed-book LLMs struggle with domain-specific questions, highlighting the need for RAG models to solve expert problems. Moreover, there is room for RAG models to improve their abilities in comprehending conversational history, analyzing structural information, denoising, processing multi-document interactions, and faithfulness in expert knowledge. We expect future studies could solve these problems better.


Large Language Models for Information Retrieval: A Survey

arXiv.org Artificial Intelligence

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.


Investigating Active Learning for Concept Prerequisite Learning

AAAI Conferences

Concept prerequisite learning focuses on machine learning methods for measuring the prerequisite relation among concepts. With the importance of prerequisites for education, it has recently become a promising research direction. A major obstacle to extracting prerequisites at scale is the lack of large-scale labels which will enable effective data-driven solutions. We investigate the applicability of active learning to concept prerequisite learning.We propose a novel set of features tailored for prerequisite classification and compare the effectiveness of four widely used query strategies. Experimental results for domains including data mining, geometry, physics, and precalculus show that active learning can be used to reduce the amount of training data required. Given the proposed features, the query-by-committee strategy outperforms other compared query strategies.