Goto

Collaborating Authors

 Wang, Shu


In-depth Analysis of Graph-based RAG in a Unified Framework

arXiv.org Artificial Intelligence

Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs), improving their factual accuracy, adaptability, interpretability, and trustworthiness. A number of graph-based RAG methods have been proposed in the literature. However, these methods have not been systematically and comprehensively compared under the same experimental settings. In this paper, we first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective. We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets -- from specific questions to abstract questions -- and examine the effectiveness of all methods, providing a thorough analysis of graph-based RAG approaches. As a byproduct of our experimental analysis, we are also able to identify new variants of the graph-based RAG methods over specific QA and abstract QA tasks respectively, by combining existing techniques, which outperform the state-of-the-art methods. Finally, based on these findings, we offer promising research opportunities. We believe that a deeper understanding of the behavior of existing methods can provide new valuable insights for future research.


ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in terms of both accuracy and token cost.


Scalable Language Models with Posterior Inference of Latent Thought Vectors

arXiv.org Machine Learning

We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.


ChronoLLM: A Framework for Customizing Large Language Model for Digital Twins generalization based on PyChrono

arXiv.org Artificial Intelligence

Project Chrono [1] is an open-source, physics-based simulation framework that supports the modeling, simulation, and analysis of complex systems. It is designed for high-performance, high-fidelity simulations and is widely used in research and industry. PyChrono [2] is the Python wrapper for Project Chrono, providing a user-friendly interface to the core functionalities of Project Chrono. It allows users to leverage the power of Project Chrono using Python, making it accessible to a broader range of users who prefer scripting in Python over C++. Project Chrono encompasses a wide range of features, and PyChrono inherits a subset of these capabilities: 1. Chrono::Engine: Provides core functionality for multibody dynamics and nonlinear finite element analysis, with robust treatment of friction and contact using both the penalty method and the Lagrange-multiplier method.


Explore the Reasoning Capability of LLMs in the Chess Testbed

arXiv.org Artificial Intelligence

Reasoning is a central capability of human intelligence. In recent years, with the advent of large-scale datasets, pretrained large language models have emerged with new capabilities, including reasoning. However, these models still struggle with long-term, complex reasoning tasks, such as playing chess. Based on the observation that expert chess players employ a dual approach combining long-term strategic play with short-term tactical play along with language explanation, we propose improving the reasoning capability of large language models in chess by integrating annotated strategy and tactic. Specifically, we collect a dataset named MATE, which consists of 1 million chess positions with candidate moves annotated by chess experts for strategy and tactics. We finetune the LLaMA-3-8B model and compare it against state-of-the-art commercial language models in the task of selecting better chess moves. Our experiments show that our models perform better than GPT, Claude, and Gemini models. We find that language explanations can enhance the reasoning capability of large language models.


ToolGen: Unified Tool Retrieval and Calling via Generation

arXiv.org Artificial Intelligence

As large language models (LLMs) advance, their inability to autonomously execute tasks by directly interacting with external tools remains a critical limitation. Traditional methods rely on inputting tool descriptions as context, which is constrained by context length and requires separate, often inefficient, retrieval mechanisms. We introduce ToolGen, a paradigm shift that integrates tool knowledge directly into the LLM's parameters by representing each tool as a unique token. This enables the LLM to generate tool calls and arguments as part of its next token prediction capabilities, seamlessly blending tool invocation with language generation. Our framework allows the LLM to access and utilize a vast amount of tools with no additional retrieval step, significantly enhancing both performance and scalability. Experimental results with over 47,000 tools show that ToolGen not only achieves superior results in both tool retrieval and autonomous task completion but also sets the stage for a new era of AI agents that can adapt to tools across diverse domains. By fundamentally transforming tool retrieval into a generative process, ToolGen paves the way for more versatile, efficient, and autonomous AI systems. ToolGen enables end-to-end tool learning and opens opportunities for integration with other advanced techniques such as chain-of-thought and reinforcement learning, thereby expanding the practical capabilities of LLMs.


FedGCA: Global Consistent Augmentation Based Single-Source Federated Domain Generalization

arXiv.org Artificial Intelligence

Federated Domain Generalization (FedDG) aims to train the global model for generalization ability to unseen domains with multi-domain training samples. However, clients in federated learning networks are often confined to a single, non-IID domain due to inherent sampling and temporal limitations. The lack of cross-domain interaction and the in-domain divergence impede the learning of domain-common features and limit the effectiveness of existing FedDG, referred to as the single-source FedDG (sFedDG) problem. To address this, we introduce the Federated Global Consistent Augmentation (FedGCA) method, which incorporates a style-complement module to augment data samples with diverse domain styles. To ensure the effective integration of augmented samples, FedGCA employs both global guided semantic consistency and class consistency, mitigating inconsistencies from local semantics within individual clients and classes across multiple clients. The conducted extensive experiments demonstrate the superiority of FedGCA.


Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing

arXiv.org Artificial Intelligence

Warning: this paper contains model outputs exhibiting unethical information. Large Language Models (LLMs) have achieved significant breakthroughs, but their generated unethical content poses potential risks. Measuring value alignment of LLMs becomes crucial for their regulation and responsible deployment. Numerous datasets have been constructed to assess social bias, toxicity, and ethics in LLMs, but they suffer from evaluation chronoeffect, that is, as models rapidly evolve, existing data becomes leaked or undemanding, overestimating ever-developing LLMs. To tackle this problem, we propose GETA, a novel generative evolving testing approach that dynamically probes the underlying moral baselines of LLMs. Distinct from previous adaptive testing methods that rely on static datasets with limited difficulty, GETA incorporates an iteratively-updated item generator which infers each LLM's moral boundaries and generates difficulty-tailored testing items, accurately reflecting the true alignment extent. This process theoretically learns a joint distribution of item and model response, with item difficulty and value conformity as latent variables, where the generator co-evolves with the LLM, addressing chronoeffect. We evaluate various popular LLMs with diverse capabilities and demonstrate that GETA can create difficulty-matching testing items and more accurately assess LLMs' values, better consistent with their performance on unseen OOD and i.i.d.


The Surprising Benefits of Base Rate Neglect in Robust Aggregation

arXiv.org Artificial Intelligence

Robust aggregation integrates predictions from multiple experts without knowledge of the experts' information structures. Prior work assumes experts are Bayesian, providing predictions as perfect posteriors based on their signals. However, real-world experts often deviate systematically from Bayesian reasoning. Our work considers experts who tend to ignore the base rate. We find that a certain degree of base rate neglect helps with robust forecast aggregation. Specifically, we consider a forecast aggregation problem with two experts who each predict a binary world state after observing private signals. Unlike previous work, we model experts exhibiting base rate neglect, where they incorporate the base rate information to degree $\lambda\in[0,1]$, with $\lambda=0$ indicating complete ignorance and $\lambda=1$ perfect Bayesian updating. To evaluate aggregators' performance, we adopt Arieli et al. (2018)'s worst-case regret model, which measures the maximum regret across the set of considered information structures compared to an omniscient benchmark. Our results reveal the surprising V-shape of regret as a function of $\lambda$. That is, predictions with an intermediate incorporating degree of base rate $\lambda<1$ can counter-intuitively lead to lower regret than perfect Bayesian posteriors with $\lambda=1$. We additionally propose a new aggregator with low regret robust to unknown $\lambda$. Finally, we conduct an empirical study to test the base rate neglect model and evaluate the performance of various aggregators.


Ag2Manip: Learning Novel Manipulation Skills with Agent-Agnostic Visual and Action Representations

arXiv.org Artificial Intelligence

Autonomous robotic systems capable of learning novel manipulation tasks are poised to transform industries from manufacturing to service automation. However, modern methods (e.g., VIP and R3M) still face significant hurdles, notably the domain gap among robotic embodiments and the sparsity of successful task executions within specific action spaces, resulting in misaligned and ambiguous task representations. We introduce Ag2Manip (Agent-Agnostic representations for Manipulation), a framework aimed at surmounting these challenges through two key innovations: a novel agent-agnostic visual representation derived from human manipulation videos, with the specifics of embodiments obscured to enhance generalizability; and an agent-agnostic action representation abstracting a robot's kinematics to a universal agent proxy, emphasizing crucial interactions between end-effector and object. Ag2Manip's empirical validation across simulated benchmarks like FrankaKitchen, ManiSkill, and PartManip shows a 325% increase in performance, achieved without domain-specific demonstrations. Ablation studies underline the essential contributions of the visual and action representations to this success. Extending our evaluations to the real world, Ag2Manip significantly improves imitation learning success rates from 50% to 77.5%, demonstrating its effectiveness and generalizability across both simulated and physical environments.