Goto

Collaborating Authors

 Wang, Shaowen


Building Machine Learning Challenges for Anomaly Detection in Science

arXiv.org Artificial Intelligence

Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.


Deep Learning and Foundation Models for Weather Prediction: A Survey

arXiv.org Artificial Intelligence

Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.


CAdam: Confidence-Based Optimization for Online Learning

arXiv.org Machine Learning

Modern recommendation systems frequently employ online learning to dynamically update their models with freshly collected data. The most commonly used optimizer for updating neural networks in these contexts is the Adam optimizer, which integrates momentum ($m_t$) and adaptive learning rate ($v_t$). However, the volatile nature of online learning data, characterized by its frequent distribution shifts and presence of noises, poses significant challenges to Adam's standard optimization process: (1) Adam may use outdated momentum and the average of squared gradients, resulting in slower adaptation to distribution changes, and (2) Adam's performance is adversely affected by data noise. To mitigate these issues, we introduce CAdam, a confidence-based optimization strategy that assesses the consistence between the momentum and the gradient for each parameter dimension before deciding on updates. If momentum and gradient are in sync, CAdam proceeds with parameter updates according to Adam's original formulation; if not, it temporarily withholds updates and monitors potential shifts in data distribution in subsequent iterations. This method allows CAdam to distinguish between the true distributional shifts and mere noise, and adapt more quickly to new data distributions. Our experiments with both synthetic and real-world datasets demonstrate that CAdam surpasses other well-known optimizers, including the original Adam, in efficiency and noise robustness. Furthermore, in large-scale A/B testing within a live recommendation system, CAdam significantly enhances model performance compared to Adam, leading to substantial increases in the system's gross merchandise volume (GMV).


LoRA-GA: Low-Rank Adaptation with Gradient Approximation

arXiv.org Artificial Intelligence

Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs. LoRA, as one of the most popular Parameter-Efficient Fine-Tuning (PEFT) methods, offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters. Although LoRA reduces the computational and memory requirements significantly at each iteration, extensive empirical evidence indicates that it converges at a considerably slower rate compared to full fine-tuning, ultimately leading to increased overall compute and often worse test performance. In our paper, we perform an in-depth investigation of the initialization method of LoRA and show that careful initialization (without any change of the architecture and the training algorithm) can significantly enhance both efficiency and performance. In particular, we introduce a novel initialization method, LoRA-GA (Low Rank Adaptation with Gradient Approximation), which aligns the gradients of low-rank matrix product with those of full fine-tuning at the first step. Our extensive experiments demonstrate that LoRA-GA achieves a convergence rate comparable to that of full fine-tuning (hence being significantly faster than vanilla LoRA as well as various recent improvements) while simultaneously attaining comparable or even better performance. For example, on the subset of the GLUE dataset with T5-Base, LoRA-GA outperforms LoRA by 5.69% on average. On larger models such as Llama 2-7B, LoRA-GA shows performance improvements of 0.34, 11.52%, and 5.05% on MT-bench, GSM8K, and Human-eval, respectively. Additionally, we observe up to 2-4 times convergence speed improvement compared to vanilla LoRA, validating its effectiveness in accelerating convergence and enhancing model performance. Code is available at https://github.com/Outsider565/LoRA-GA.


Graph Transformer Network for Flood Forecasting with Heterogeneous Covariates

arXiv.org Artificial Intelligence

Floods can be very destructive causing heavy damage to life, property, and livelihoods. Global climate change and the consequent sea-level rise have increased the occurrence of extreme weather events, resulting in elevated and frequent flood risk. Therefore, accurate and timely flood forecasting in coastal river systems is critical to facilitate good flood management. However, the computational tools currently used are either slow or inaccurate. In this paper, we propose a Flood prediction tool using Graph Transformer Network (FloodGTN) for river systems. More specifically, FloodGTN learns the spatio-temporal dependencies of water levels at different monitoring stations using Graph Neural Networks (GNNs) and an LSTM. It is currently implemented to consider external covariates such as rainfall, tide, and the settings of hydraulic structures (e.g., outflows of dams, gates, pumps, etc.) along the river. We use a Transformer to learn the attention given to external covariates in computing water levels. We apply the FloodGTN tool to data from the South Florida Water Management District, which manages a coastal area prone to frequent storms and hurricanes. Experimental results show that FloodGTN outperforms the physics-based model (HEC-RAS) by achieving higher accuracy with 70% improvement while speeding up run times by at least 500x.


Generative Table Pre-training Empowers Models for Tabular Prediction

arXiv.org Artificial Intelligence

Recently, the topic of table pre-training has attracted considerable research interest. However, how to employ table pre-training to boost the performance of tabular prediction remains an open challenge. In this paper, we propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction. After pre-training on a large corpus of real-world tabular data, TapTap can generate high-quality synthetic tables to support various applications on tabular data, including privacy protection, low resource regime, missing value imputation, and imbalanced classification. Extensive experiments on 12 datasets demonstrate that TapTap outperforms a total of 16 baselines in different scenarios. Meanwhile, it can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer. Moreover, with the aid of table pre-training, models trained using synthetic data generated by TapTap can even compete with models using the original dataset on half of the experimental datasets, marking a milestone in the development of synthetic tabular data generation. The codes are available at https://github.com/ZhangTP1996/TapTap.