Wang, Shaokun
Dynamic Integration of Task-Specific Adapters for Class Incremental Learning
Li, Jiashuo, Wang, Shaokun, Qian, Bo, He, Yuhang, Wei, Xing, Gong, Yihong
Non-exemplar class Incremental Learning (NECIL) enables models to continuously acquire new classes without retraining from scratch and storing old task exemplars, addressing privacy and storage issues. However, the absence of data from earlier tasks exacerbates the challenge of catastrophic forgetting in NECIL. In this paper, we propose a novel framework called Dynamic Integration of task-specific Adapters (DIA), which comprises two key components: Task-Specific Adapter Integration (TSAI) and Patch-Level Model Alignment. TSAI boosts compositionality through a patch-level adapter integration strategy, which provides a more flexible compositional solution while maintaining low computation costs. Patch-Level Model Alignment maintains feature consistency and accurate decision boundaries via two specialized mechanisms: Patch-Level Distillation Loss (PDL) and Patch-Level Feature Reconstruction method (PFR). Specifically, the PDL preserves feature-level consistency between successive models by implementing a distillation loss based on the contributions of patch tokens to new class learning. The PFR facilitates accurate classifier alignment by reconstructing old class features from previous tasks that adapt to new task knowledge. Extensive experiments validate the effectiveness of our DIA, revealing significant improvements on benchmark datasets in the NECIL setting, maintaining an optimal balance between computational complexity and accuracy. The full code implementation will be made publicly available upon the publication of this paper.
Continual Novel Class Discovery via Feature Enhancement and Adaptation
Yu, Yifan, Wang, Shaokun, He, Yuhang, Chen, Junzhe, Gong, Yihong
Continual Novel Class Discovery (CNCD) aims to continually discover novel classes without labels while maintaining the recognition capability for previously learned classes. The main challenges faced by CNCD include the feature-discrepancy problem, the inter-session confusion problem, etc. In this paper, we propose a novel Feature Enhancement and Adaptation method for the CNCD to tackle the above challenges, which consists of a guide-to-novel framework, a centroid-to-samples similarity constraint (CSS), and a boundary-aware prototype constraint (BAP). More specifically, the guide-to-novel framework is established to continually discover novel classes under the guidance of prior distribution. Afterward, the CSS is designed to constrain the relationship between centroid-to-samples similarities of different classes, thereby enhancing the distinctiveness of features among novel classes. Finally, the BAP is proposed to keep novel class features aware of the positions of other class prototypes during incremental sessions, and better adapt novel class features to the shared feature space. Experimental results on three benchmark datasets demonstrate the superiority of our method, especially in more challenging protocols with more incremental sessions.