Goto

Collaborating Authors

 Wang, Shaobo


Dataset Distillation with Neural Characteristic Function: A Minmax Perspective

arXiv.org Artificial Intelligence

Dataset distillation has emerged as a powerful approach for reducing data requirements in deep learning. Among various methods, distribution matching-based approaches stand out for their balance of computational efficiency and strong performance. However, existing distance metrics used in distribution matching often fail to accurately capture distributional differences, leading to unreliable measures of discrepancy. In this paper, we reformulate dataset distillation as a minmax optimization problem and introduce Neural Characteristic Function Discrepancy (NCFD), a comprehensive and theoretically grounded metric for measuring distributional differences. NCFD leverages the Characteristic Function (CF) to encapsulate full distributional information, employing a neural network to optimize the sampling strategy for the CF's frequency arguments, thereby maximizing the discrepancy to enhance distance estimation. Simultaneously, we minimize the difference between real and synthetic data under this optimized NCFD measure. Our approach, termed Neural Characteristic Function Matching (\mymethod{}), inherently aligns the phase and amplitude of neural features in the complex plane for both real and synthetic data, achieving a balance between realism and diversity in synthetic samples. Experiments demonstrate that our method achieves significant performance gains over state-of-the-art methods on both low- and high-resolution datasets. Notably, we achieve a 20.5\% accuracy boost on ImageSquawk. Our method also reduces GPU memory usage by over 300$\times$ and achieves 20$\times$ faster processing speeds compared to state-of-the-art methods. To the best of our knowledge, this is the first work to achieve lossless compression of CIFAR-100 on a single NVIDIA 2080 Ti GPU using only 2.3 GB of memory.


Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More

arXiv.org Artificial Intelligence

Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99$\times$ and 2.99$\times$ speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.


Gnothi Seauton: Empowering Faithful Self-Interpretability in Black-Box Models

arXiv.org Artificial Intelligence

The debate between self-interpretable models and post-hoc explanations for blackbox models is central to Explainable AI (XAI). Self-interpretable models, such as concept-based networks, offer insights by connecting decisions to humanunderstandable concepts but often struggle with performance and scalability. Conversely, post-hoc methods like Shapley values, while theoretically robust, are computationally expensive and resource-intensive. To bridge the gap between these two lines of research, we propose a novel method that combines their strengths, providing theoretically guaranteed self-interpretability for black-box models without compromising prediction accuracy. Specifically, we introduce a parameter-efficient pipeline, AutoGnothi, which integrates a small side network into the black-box model, allowing it to generate Shapley value explanations without changing the original network parameters. This side-tuning approach significantly reduces memory, training, and inference costs, outperforming traditional parameter-efficient methods, where full fine-tuning serves as the optimal baseline. AutoGnothi enables the black-box model to predict and explain its predictions with minimal overhead. Extensive experiments show that AutoGnothi offers accurate explanations for both vision and language tasks, delivering superior computational efficiency with comparable interpretability. Explainable AI (XAI) has gained increasing significance as AI systems are widely deployed in both vision (Dosovitskiy, 2020; Radford et al., 2021; Kirillov et al., 2023) and language domains (Devlin et al., 2019; Brown, 2020; Achiam et al., 2023). Ensuring interpretability in these systems is vital for fostering trust, ensuring fairness, and adhering to legal standards, particularly for complex models such as transformers. As illustrated in Figure 1(a), the ideal paradigm for XAI involves designing inherently transparent models that deliver superior performance.


DRUPI: Dataset Reduction Using Privileged Information

arXiv.org Artificial Intelligence

Dataset reduction (DR) seeks to select or distill samples from large datasets into smaller subsets while preserving performance on target tasks. Existing methods primarily focus on pruning or synthesizing data in the same format as the original dataset, typically the input data and corresponding labels. However, in DR settings, we find it is possible to synthesize more information beyond the data-label pair as an additional learning target to facilitate model training. In this paper, we introduce Dataset Reduction Using Privileged Information (DRUPI), which enriches DR by synthesizing privileged information alongside the reduced dataset. This privileged information can take the form of feature labels or attention labels, providing auxiliary supervision to improve model learning. Our findings reveal that effective feature labels must balance between being overly discriminative and excessively diverse, with a moderate level proving optimal for improving the reduced dataset's efficacy. Extensive experiments on ImageNet, CIFAR-10/100, and Tiny ImageNet demonstrate that DRUPI integrates seamlessly with existing dataset reduction methods, offering significant performance gains. The code will be released after the paper is accepted. Dataset Reduction (DR) has attracted considerable attention in recent years, with the primary aim of compressing large datasets into smaller subsets while maintaining comparable statistical performance. Existing methods for DR can be broadly classified into two main categories: coreset selection and dataset distillation. In typical real-world scenarios, training models for target tasks is generally constrained to input data (e.g., images) and their corresponding labels, as these are the most readily available elements.


Think2Drive: Efficient Reinforcement Learning by Thinking in Latent World Model for Quasi-Realistic Autonomous Driving (in CARLA-v2)

arXiv.org Artificial Intelligence

Real-world autonomous driving (AD) especially urban driving involves many corner cases. The lately released AD simulator CARLA v2 adds 39 common events in the driving scene, and provide more quasi-realistic testbed compared to CARLA v1. It poses new challenge to the community and so far no literature has reported any success on the new scenarios in V2 as existing works mostly have to rely on specific rules for planning yet they cannot cover the more complex cases in CARLA v2. In this work, we take the initiative of directly training a planner and the hope is to handle the corner cases flexibly and effectively, which we believe is also the future of AD. To our best knowledge, we develop the first model-based RL method named Think2Drive for AD, with a world model to learn the transitions of the environment, and then it acts as a neural simulator to train the planner. This paradigm significantly boosts the training efficiency due to the low dimensional state space and parallel computing of tensors in the world model. As a result, Think2Drive is able to run in an expert-level proficiency in CARLA v2 within 3 days of training on a single A6000 GPU, and to our best knowledge, so far there is no reported success (100\% route completion)on CARLA v2. We also propose CornerCase-Repository, a benchmark that supports the evaluation of driving models by scenarios. Additionally, we propose a new and balanced metric to evaluate the performance by route completion, infraction number, and scenario density, so that the driving score could give more information about the actual driving performance.


Unified Batch Normalization: Identifying and Alleviating the Feature Condensation in Batch Normalization and a Unified Framework

arXiv.org Artificial Intelligence

Batch Normalization (BN) has become an essential technique in contemporary neural network design, enhancing training stability. Specifically, BN employs centering and scaling operations to standardize features along the batch dimension and uses an affine transformation to recover features. Although standard BN has shown its capability to improve deep neural network training and convergence, it still exhibits inherent limitations in certain cases. Most existing techniques that enhance BN consider a single or a few aspects of BN. In this paper, we first identify problems with BN from a feature perspective and explore that feature condensation exists in the learning when employing BN, which negatively affects testing performance. To tackle this problem, we propose a two-stage unified framework called Unified Batch Normalization (UBN). In the first stage, we utilize a simple feature condensation threshold to alleviate the feature condensation, which hinders inappropriate statistic updates in normalization. In the second stage, we unify various normalization variants to boost each component of BN. Our experimental results reveal that UBN significantly enhances performance across different visual backbones and notably expedites network training convergence, particularly in early training stages. Notably, our method improved about 3% in top-1 accuracy on ImageNet classification with large batch sizes, showing the effectiveness of our approach in real-world scenarios.


TencentLLMEval: A Hierarchical Evaluation of Real-World Capabilities for Human-Aligned LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown impressive capabilities across various natural language tasks. However, evaluating their alignment with human preferences remains a challenge. To this end, we propose a comprehensive human evaluation framework to assess LLMs' proficiency in following instructions on diverse real-world tasks. We construct a hierarchical task tree encompassing 7 major areas covering over 200 categories and over 800 tasks, which covers diverse capabilities such as question answering, reasoning, multiturn dialogue, and text generation, to evaluate LLMs in a comprehensive and in-depth manner. We also design detailed evaluation standards and processes to facilitate consistent, unbiased judgments from human evaluators. A test set of over 3,000 instances is released, spanning different difficulty levels and knowledge domains. Our work provides a standardized methodology to evaluate human alignment in LLMs for both English and Chinese. We also analyze the feasibility of automating parts of evaluation with a strong LLM (GPT-4). Our framework supports a thorough assessment of LLMs as they are integrated into real-world applications. We have made publicly available the task tree, TencentLLMEval dataset, and evaluation methodology which have been demonstrated as effective in assessing the performance of Tencent Hunyuan LLMs. By doing so, we aim to facilitate the benchmarking of advances in the development of safe and human-aligned LLMs.


Visualizing the Emergence of Intermediate Visual Patterns in DNNs

arXiv.org Artificial Intelligence

This paper proposes a method to visualize the discrimination power of intermediate-layer visual patterns encoded by a DNN. Specifically, we visualize (1) how the DNN gradually learns regional visual patterns in each intermediate layer during the training process, and (2) the effects of the DNN using non-discriminative patterns in low layers to construct disciminative patterns in middle/high layers through the forward propagation. Based on our visualization method, we can quantify knowledge points (i.e., the number of discriminative visual patterns) learned by the DNN to evaluate the representation capacity of the DNN. Furthermore, this method also provides new insights into signal-processing behaviors of existing deep-learning techniques, such as adversarial attacks and knowledge distillation.