Goto

Collaborating Authors

 Wang, Saizhuo


From Deep Learning to LLMs: A survey of AI in Quantitative Investment

arXiv.org Artificial Intelligence

Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows.


Guided Learning: Lubricating End-to-End Modeling for Multi-stage Decision-making

arXiv.org Artificial Intelligence

Multi-stage decision-making is crucial in various real-world artificial intelligence applications, including recommendation systems, autonomous driving, and quantitative investment systems. In quantitative investment, for example, the process typically involves several sequential stages such as factor mining, alpha prediction, portfolio optimization, and sometimes order execution. While state-of-the-art end-to-end modeling aims to unify these stages into a single global framework, it faces significant challenges: (1) training such a unified neural network consisting of multiple stages between initial inputs and final outputs often leads to suboptimal solutions, or even collapse, and (2) many decision-making scenarios are not easily reducible to standard prediction problems. To overcome these challenges, we propose Guided Learning, a novel methodological framework designed to enhance end-to-end learning in multi-stage decision-making. We introduce the concept of a ``guide'', a function that induces the training of intermediate neural network layers towards some phased goals, directing gradients away from suboptimal collapse. For decision scenarios lacking explicit supervisory labels, we incorporate a utility function that quantifies the ``reward'' of the throughout decision. Additionally, we explore the connections between Guided Learning and classic machine learning paradigms such as supervised, unsupervised, semi-supervised, multi-task, and reinforcement learning. Experiments on quantitative investment strategy building demonstrate that guided learning significantly outperforms both traditional stage-wise approaches and existing end-to-end methods.


Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models

arXiv.org Artificial Intelligence

As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o, Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research.


Alpha-GPT 2.0: Human-in-the-Loop AI for Quantitative Investment

arXiv.org Artificial Intelligence

Recently, we introduced a new paradigm for alpha mining in the realm of quantitative investment, developing a new interactive alpha mining system framework, Alpha-GPT. This system is centered on iterative Human-AI interaction based on large language models, introducing a Human-in-the-Loop approach to alpha discovery. In this paper, we present the next-generation Alpha-GPT 2.0 \footnote{Draft. Work in progress}, a quantitative investment framework that further encompasses crucial modeling and analysis phases in quantitative investment. This framework emphasizes the iterative, interactive research between humans and AI, embodying a Human-in-the-Loop strategy throughout the entire quantitative investment pipeline. By assimilating the insights of human researchers into the systematic alpha research process, we effectively leverage the Human-in-the-Loop approach, enhancing the efficiency and precision of quantitative investment research.


QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large Language Model

arXiv.org Artificial Intelligence

Autonomous agents based on Large Language Models (LLMs) that devise plans and tackle real-world challenges have gained prominence.However, tailoring these agents for specialized domains like quantitative investment remains a formidable task. The core challenge involves efficiently building and integrating a domain-specific knowledge base for the agent's learning process. This paper introduces a principled framework to address this challenge, comprising a two-layer loop.In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios to automatically enhance the knowledge base with new insights.We demonstrate that our approach enables the agent to progressively approximate optimal behavior with provable efficiency.Furthermore, we instantiate this framework through an autonomous agent for mining trading signals named QuantAgent. Empirical results showcase QuantAgent's capability in uncovering viable financial signals and enhancing the accuracy of financial forecasts.


Think-on-Graph: Deep and Responsible Reasoning of Large Language Model on Knowledge Graph

arXiv.org Artificial Intelligence

Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``$\hbox{LLM}\otimes\hbox{KG}$'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.


A Principled Framework for Knowledge-enhanced Large Language Model

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning due to issues like hallucinations, limiting their applicability in critical scenarios. This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process, enhancing their capability for in-depth analysis. We dissect the framework to illustrate the contribution of each component to the LLMs' performance, offering a theoretical assurance of improved reasoning under well-defined assumptions.


On the Evolution of Knowledge Graphs: A Survey and Perspective

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation.


Alpha-GPT: Human-AI Interactive Alpha Mining for Quantitative Investment

arXiv.org Artificial Intelligence

One of the most important tasks in quantitative investment research is mining new alphas (effective trading signals or factors). Traditional alpha mining methods, either hand-crafted factor synthesizing or algorithmic factor mining (e.g., search with genetic programming), have inherent limitations, especially in implementing the ideas of quants. In this work, we propose a new alpha mining paradigm by introducing human-AI interaction, and a novel prompt engineering algorithmic framework to implement this paradigm by leveraging the power of large language models. Moreover, we develop Alpha-GPT, a new interactive alpha mining system framework that provides a heuristic way to ``understand'' the ideas of quant researchers and outputs creative, insightful, and effective alphas. We demonstrate the effectiveness and advantage of Alpha-GPT via a number of alpha mining experiments.


Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence

arXiv.org Artificial Intelligence

Quantitative investment (``quant'') is an interdisciplinary field combining financial engineering, computer science, mathematics, statistics, etc. Quant has become one of the mainstream investment methodologies over the past decades, and has experienced three generations: Quant 1.0, trading by mathematical modeling to discover mis-priced assets in markets; Quant 2.0, shifting quant research pipeline from small ``strategy workshops'' to large ``alpha factories''; Quant 3.0, applying deep learning techniques to discover complex nonlinear pricing rules. Despite its advantage in prediction, deep learning relies on extremely large data volume and labor-intensive tuning of ``black-box'' neural network models. To address these limitations, in this paper, we introduce Quant 4.0 and provide an engineering perspective for next-generation quant. Quant 4.0 has three key differentiating components. First, automated AI changes quant pipeline from traditional hand-craft modeling to the state-of-the-art automated modeling, practicing the philosophy of ``algorithm produces algorithm, model builds model, and eventually AI creates AI''. Second, explainable AI develops new techniques to better understand and interpret investment decisions made by machine learning black-boxes, and explains complicated and hidden risk exposures. Third, knowledge-driven AI is a supplement to data-driven AI such as deep learning and it incorporates prior knowledge into modeling to improve investment decision, in particular for quantitative value investing. Moreover, we discuss how to build a system that practices the Quant 4.0 concept. Finally, we propose ten challenging research problems for quant technology, and discuss potential solutions, research directions, and future trends.