Wang, Renfang
EFKAN: A KAN-Integrated Neural Operator For Efficient Magnetotelluric Forward Modeling
Wang, Feng, Qiu, Hong, Huang, Yingying, Gu, Xiaozhe, Wang, Renfang, Yang, Bo
Magnetotelluric (MT) forward modeling is fundamental for improving the accuracy and efficiency of MT inversion. Neural operators (NOs) have been effectively used for rapid MT forward modeling, demonstrating their promising performance in solving the MT forward modeling-related partial differential equations (PDEs). Particularly, they can obtain the electromagnetic field at arbitrary locations and frequencies. In these NOs, the projection layers have been dominated by multi-layer perceptrons (MLPs), which may potentially reduce the accuracy of solution due to they usually suffer from the disadvantages of MLPs, such as lack of interpretability, overfitting, and so on. Therefore, to improve the accuracy of MT forward modeling with NOs and explore the potential alternatives to MLPs, we propose a novel neural operator by extending the Fourier neural operator (FNO) with Kolmogorov-Arnold network (EFKAN). Within the EFKAN framework, the FNO serves as the branch network to calculate the apparent resistivity and phase from the resistivity model in the frequency domain. Meanwhile, the KAN acts as the trunk network to project the resistivity and phase, determined by the FNO, to the desired locations and frequencies. Experimental results demonstrate that the proposed method not only achieves higher accuracy in obtaining apparent resistivity and phase compared to the NO equipped with MLPs at the desired frequencies and locations but also outperforms traditional numerical methods in terms of computational speed.
Seismic Traveltime Tomography with Label-free Learning
Wang, Feng, Yang, Bo, Wang, Renfang, Qiu, Hong
Deep learning techniques have been used to build velocity models (VMs) for seismic traveltime tomography and have shown encouraging performance in recent years. However, they need to generate labeled samples (i.e., pairs of input and label) to train the deep neural network (NN) with end-to-end learning, and the real labels for field data inversion are usually missing or very expensive. Some traditional tomographic methods can be implemented quickly, but their effectiveness is often limited by prior assumptions. To avoid generating labeled samples, we propose a novel method by integrating deep learning and dictionary learning to enhance the VMs with low resolution by using the traditional tomography-least square method (LSQR). We first design a type of shallow and simple NN to reduce computational cost followed by proposing a two-step strategy to enhance the VMs with low resolution: (1) Warming up. An initial dictionary is trained from the estimation by LSQR through dictionary learning method; (2) Dictionary optimization. The initial dictionary obtained in the warming-up step will be optimized by the NN, and then it will be used to reconstruct high-resolution VMs with the reference slowness and the estimation by LSQR. Furthermore, we design a loss function to minimize traveltime misfit to ensure that NN training is label-free, and the optimized dictionary can be obtained after each epoch of NN training. We demonstrate the effectiveness of the proposed method through numerical tests.