Goto

Collaborating Authors

 Wang, Qun


Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base

arXiv.org Artificial Intelligence

The widespread adoption of Internet of Things (IoT) devices has introduced significant cybersecurity challenges, particularly with the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks. Traditional machine learning (ML) techniques often fall short in detecting such attacks due to the complexity of blended and evolving patterns. To address this, we propose a novel framework leveraging On-Device Large Language Models (ODLLMs) augmented with fine-tuning and knowledge base (KB) integration for intelligent IoT network attack detection. By implementing feature ranking techniques and constructing both long and short KBs tailored to model capacities, the proposed framework ensures efficient and accurate detection of DDoS attacks while overcoming computational and privacy limitations. Simulation results demonstrate that the optimized framework achieves superior accuracy across diverse attack types, especially when using compact models in edge computing environments. This work provides a scalable and secure solution for real-time IoT security, advancing the applicability of edge intelligence in cybersecurity.


Optimizing food taste sensory evaluation through neural network-based taste electroencephalogram channel selection

arXiv.org Artificial Intelligence

The taste electroencephalogram (EEG) evoked by the taste stimulation can reflect different brain patterns and be used in applications such as sensory evaluation of food. However, considering the computational cost and efficiency, EEG data with many channels has to face the critical issue of channel selection. This paper proposed a channel selection method called class activation mapping with attention (CAM-Attention). The CAM-Attention method combined a convolutional neural network with channel and spatial attention (CNN-CSA) model with a gradient-weighted class activation mapping (Grad-CAM) model. The CNN-CSA model exploited key features in EEG data by attention mechanism, and the Grad-CAM model effectively realized the visualization of feature regions. Then, channel selection was effectively implemented based on feature regions. Finally, the CAM-Attention method reduced the computational burden of taste EEG recognition and effectively distinguished the four tastes. In short, it has excellent recognition performance and provides effective technical support for taste sensory evaluation.


Xmodel-LM Technical Report

arXiv.org Artificial Intelligence

We introduce Xmodel-LM, a compact and efficient 1.1B language model pre-trained on around 2 trillion tokens. Trained on our self-built dataset (Xdata), which balances Chinese and English corpora based on downstream task optimization, Xmodel-LM exhibits remarkable performance despite its smaller size. It notably surpasses existing open-source language models of similar scale. Our model checkpoints and code are publicly accessible on GitHub at https://github.com/XiaoduoAILab/XmodelLM.


User Scheduling for Federated Learning Through Over-the-Air Computation

arXiv.org Artificial Intelligence

A new machine learning (ML) technique termed as federated learning (FL) aims to preserve data at the edge devices and to only exchange ML model parameters in the learning process. FL not only reduces the communication needs but also helps to protect the local privacy. Although FL has these advantages, it can still experience large communication latency when there are massive edge devices connected to the central parameter server (PS) and/or millions of model parameters involved in the learning process. Over-the-air computation (AirComp) is capable of computing while transmitting data by allowing multiple devices to send data simultaneously by using analog modulation. To achieve good performance in FL through AirComp, user scheduling plays a critical role. In this paper, we investigate and compare different user scheduling policies, which are based on various criteria such as wireless channel conditions and the significance of model updates. Receiver beamforming is applied to minimize the mean-square-error (MSE) of the distortion of function aggregation result via AirComp. Simulation results show that scheduling based on the significance of model updates has smaller fluctuations in the training process while scheduling based on channel condition has the advantage on energy efficiency.