Goto

Collaborating Authors

 Wang, Qirui


Full-Duplex-Bench: A Benchmark to Evaluate Full-duplex Spoken Dialogue Models on Turn-taking Capabilities

arXiv.org Artificial Intelligence

Spoken dialogue modeling introduces unique challenges beyond text-based language modeling, demanding robust turn-taking, backchanneling, and real-time interaction. Although most Spoken Dialogue Models (SDMs) rely on half-duplex processing (handling speech one turn at a time), emerging full-duplex SDMs can listen and speak simultaneously, enabling more natural and engaging conversations. However, current evaluations of such models remain limited, often focusing on turn-based metrics or high-level corpus analyses (e.g., turn gaps, pauses). To address this gap, we present Full-Duplex-Bench, a new benchmark that systematically evaluates key conversational behaviors: pause handling, backchanneling, turn-taking, and interruption management. Our framework uses automatic metrics for consistent and reproducible assessments of SDMs' interactive performance. By offering an open and standardized evaluation benchmark, we aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.


Multi-Modal Video Feature Extraction for Popularity Prediction

arXiv.org Artificial Intelligence

This work aims to predict the popularity of short videos using the videos themselves and their related features. Popularity is measured by four key engagement metrics: view count, like count, comment count, and share count. This study employs video classification models with different architectures and training methods as backbone networks to extract video modality features. Meanwhile, the cleaned video captions are incorporated into a carefully designed prompt framework, along with the video, as input for video-to-text generation models, which generate detailed text-based video content understanding. These texts are then encoded into vectors using a pre-trained BERT model. Based on the six sets of vectors mentioned above, a neural network is trained for each of the four prediction metrics. Moreover, the study conducts data mining and feature engineering based on the video and tabular data, constructing practical features such as the total frequency of hashtag appearances, the total frequency of mention appearances, video duration, frame count, frame rate, and total time online. Multiple machine learning models are trained, and the most stable model, XGBoost, is selected. Finally, the predictions from the neural network and XGBoost models are averaged to obtain the final result.


A Closer Look at Neural Codec Resynthesis: Bridging the Gap between Codec and Waveform Generation

arXiv.org Artificial Intelligence

Neural Audio Codecs, initially designed as a compression technique, have gained more attention recently for speech generation. Codec models represent each audio frame as a sequence of tokens, i.e., discrete embeddings. The discrete and low-frequency nature of neural codecs introduced a new way to generate speech with token-based models. As these tokens encode information at various levels of granularity, from coarse to fine, most existing works focus on how to better generate the coarse tokens. In this paper, we focus on an equally important but often overlooked question: How can we better resynthesize the waveform from coarse tokens? We point out that both the choice of learning target and resynthesis approach have a dramatic impact on the generated audio quality. Specifically, we study two different strategies based on token prediction and regression, and introduce a new method based on Schr\"odinger Bridge. We examine how different design choices affect machine and human perception.


MaskSR: Masked Language Model for Full-band Speech Restoration

arXiv.org Artificial Intelligence

Speech restoration aims at restoring high quality speech in the presence of a diverse set of distortions. Although several deep learning paradigms have been studied for this task, the power of the recently emerging language models has not been fully explored. In this paper, we propose MaskSR, a masked language model capable of restoring full-band 44.1 kHz speech jointly considering noise, reverb, clipping, and low bandwidth. MaskSR works with discrete acoustic tokens extracted using a pre-trained neural codec. During training, MaskSR is optimized to predict randomly masked tokens extracted from the high quality target speech, conditioned on the corrupted speech with various distortions. During inference, MaskSR reconstructs the target speech tokens with efficient iterative sampling. Extensive experiments show that MaskSR obtains competitive results on both the full-band speech restoration task and also on sub-tasks compared with a wide range of models.