Goto

Collaborating Authors

 Wang, Qin


Slow is Fast! Dissecting Ethereum's Slow Liquidity Drain Scams

arXiv.org Artificial Intelligence

We identify the slow liquidity drain (SLID) scam, an insidious and highly profitable threat to decentralized finance (DeFi), posing a large-scale, persistent, and growing risk to the ecosystem. Unlike traditional scams such as rug pulls or honeypots (USENIX Sec'19, USENIX Sec'23), SLID gradually siphons funds from liquidity pools over extended periods, making detection significantly more challenging. In this paper, we conducted the first large-scale empirical analysis of 319,166 liquidity pools across six major decentralized exchanges (DEXs) since 2018. We identified 3,117 SLID affected liquidity pools, resulting in cumulative losses of more than US$103 million. We propose a rule-based heuristic and an enhanced machine learning model for early detection. Our machine learning model achieves a detection speed 4.77 times faster than the heuristic while maintaining 95% accuracy. Our study establishes a foundation for protecting DeFi investors at an early stage and promoting transparency in the DeFi ecosystem.


Large Language Models for Cryptocurrency Transaction Analysis: A Bitcoin Case Study

arXiv.org Artificial Intelligence

Cryptocurrencies are widely used, yet current methods for analyzing transactions heavily rely on opaque, black-box models. These lack interpretability and adaptability, failing to effectively capture behavioral patterns. Many researchers, including us, believe that Large Language Models (LLMs) could bridge this gap due to their robust reasoning abilities for complex tasks. In this paper, we test this hypothesis by applying LLMs to real-world cryptocurrency transaction graphs, specifically within the Bitcoin network. We introduce a three-tiered framework to assess LLM capabilities: foundational metrics, characteristic overview, and contextual interpretation. This includes a new, human-readable graph representation format, LLM4TG, and a connectivity-enhanced sampling algorithm, CETraS, which simplifies larger transaction graphs. Experimental results show that LLMs excel at foundational metrics and offer detailed characteristic overviews. Their effectiveness in contextual interpretation suggests they can provide useful explanations of transaction behaviors, even with limited labeled data.


MiniMax-01: Scaling Foundation Models with Lightning Attention

arXiv.org Artificial Intelligence

We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.


Logic Meets Magic: LLMs Cracking Smart Contract Vulnerabilities

arXiv.org Artificial Intelligence

Smart contract vulnerabilities caused significant economic losses in blockchain applications. Large Language Models (LLMs) provide new possibilities for addressing this time-consuming task. However, state-of-the-art LLM-based detection solutions are often plagued by high false-positive rates. In this paper, we push the boundaries of existing research in two key ways. First, our evaluation is based on Solidity v0.8, offering the most up-to-date insights compared to prior studies that focus on older versions (v0.4). Second, we leverage the latest five LLM models (across companies), ensuring comprehensive coverage across the most advanced capabilities in the field. We conducted a series of rigorous evaluations. Our experiments demonstrate that a well-designed prompt can reduce the false-positive rate by over 60%. Surprisingly, we also discovered that the recall rate for detecting some specific vulnerabilities in Solidity v0.8 has dropped to just 13% compared to earlier versions (i.e., v0.4). Further analysis reveals the root cause of this decline: the reliance of LLMs on identifying changes in newly introduced libraries and frameworks during detection.


Integrating Hierarchical Semantic into Iterative Generation Model for Entailment Tree Explanation

arXiv.org Artificial Intelligence

Manifestly and logically displaying the line of reasoning from evidence to answer is significant to explainable question answering (QA). The entailment tree exhibits the lines structurally, which is different from the self-explanation principle in large-scale language models. Existing methods rarely consider the semantic association of sentences between and within hierarchies within the tree structure, which is prone to apparent mistakes in combinations. In this work, we propose an architecture of integrating the Hierarchical Semantics of sentences under the framework of Controller-Generator (HiSCG) to explain answers. The HiSCG designs a hierarchical mapping between hypotheses and facts, discriminates the facts involved in tree constructions, and optimizes single-step entailments. To the best of our knowledge, We are the first to notice hierarchical semantics of sentences between the same layer and adjacent layers to yield improvements. The proposed method achieves comparable performance on all three settings of the EntailmentBank dataset. The generalization results on two out-of-domain datasets also demonstrate the effectiveness of our method.


Is Your AI Truly Yours? Leveraging Blockchain for Copyrights, Provenance, and Lineage

arXiv.org Artificial Intelligence

As Artificial Intelligence (AI) integrates into diverse areas, particularly in content generation, ensuring rightful ownership and ethical use becomes paramount. AI service providers are expected to prioritize responsibly sourcing training data and obtaining licenses from data owners. However, existing studies primarily center on safeguarding static copyrights, which simply treats metadata/datasets as non-fungible items with transferable/trading capabilities, neglecting the dynamic nature of training procedures that can shape an ongoing trajectory. In this paper, we present \textsc{IBis}, a blockchain-based framework tailored for AI model training workflows. \textsc{IBis} integrates on-chain registries for datasets, licenses and models, alongside off-chain signing services to facilitate collaboration among multiple participants. Our framework addresses concerns regarding data and model provenance and copyright compliance. \textsc{IBis} enables iterative model retraining and fine-tuning, and offers flexible license checks and renewals. Further, \textsc{IBis} provides APIs designed for seamless integration with existing contract management software, minimizing disruptions to established model training processes. We implement \textsc{IBis} using Daml on the Canton blockchain. Evaluation results showcase the feasibility and scalability of \textsc{IBis} across varying numbers of users, datasets, models, and licenses.


From Beginner to Expert: Modeling Medical Knowledge into General LLMs

arXiv.org Artificial Intelligence

Recently, large language model (LLM) based artificial intelligence (AI) systems have demonstrated remarkable capabilities in natural language understanding and generation. However, these models face a significant challenge when it comes to sensitive applications, such as reasoning over medical knowledge and answering medical questions in a physician-like manner. Prior studies attempted to overcome this challenge by increasing the model size (>100B) to learn more general medical knowledge, while there is still room for improvement in LLMs with smaller-scale model sizes (<100B). In this work, we start from a pre-trained general LLM model (AntGLM-10B) and fine-tune it from a medical beginner towards a medical expert (called AntGLM-Med-10B), which leverages a 3-stage optimization procedure, i.e., general medical knowledge injection, medical domain instruction tuning, and specific medical task adaptation. Our contributions are threefold: (1) We specifically investigate how to adapt a pre-trained general LLM in medical domain, especially for a specific medical task. (2) We collect and construct large-scale medical datasets for each stage of the optimization process. These datasets encompass various data types and tasks, such as question-answering, medical reasoning, multi-choice questions, and medical conversations. (3) Specifically for multi-choice questions in the medical domain, we propose a novel Verification-of-Choice approach for prompting engineering, which significantly enhances the reasoning ability of LLMs. Remarkably, by combining the above approaches, our AntGLM-Med-10B model can outperform the most of LLMs on PubMedQA, including both general and medical LLMs, even when these LLMs have larger model size.


DARE-GRAM : Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices

arXiv.org Artificial Intelligence

Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepancy between source and target features. In this work, we present a different perspective for the DAR problem by analyzing the closed-form ordinary least square~(OLS) solution to the linear regressor in the deep domain adaptation context. Rather than aligning the original feature embedding space, we propose to align the inverse Gram matrix of the features, which is motivated by its presence in the OLS solution and the Gram matrix's ability to capture the feature correlations. Specifically, we propose a simple yet effective DAR method which leverages the pseudo-inverse low-rank property to align the scale and angle in a selected subspace generated by the pseudo-inverse Gram matrix of the two domains. We evaluate our method on three domain adaptation regression benchmarks. Experimental results demonstrate that our method achieves state-of-the-art performance. Our code is available at https://github.com/ismailnejjar/DARE-GRAM.


HAT: Head-Worn Assistive Teleoperation of Mobile Manipulators

arXiv.org Artificial Intelligence

Mobile manipulators in the home can provide increased autonomy to individuals with severe motor impairments, who often cannot complete activities of daily living (ADLs) without the help of a caregiver. Teleoperation of an assistive mobile manipulator could enable an individual with motor impairments to independently perform self-care and household tasks, yet limited motor function can impede one's ability to interface with a robot. In this work, we present a unique inertial-based wearable assistive interface, embedded in a familiar head-worn garment, for individuals with severe motor impairments to teleoperate and perform physical tasks with a mobile manipulator. We evaluate this wearable interface with both able-bodied (N = 16) and individuals with motor impairments (N = 2) for performing ADLs and everyday household tasks. Our results show that the wearable interface enabled participants to complete physical tasks with low error rates, high perceived ease of use, and low workload measures. Overall, this inertial-based wearable serves as a new assistive interface option for control of mobile manipulators in the home.


IronForge: An Open, Secure, Fair, Decentralized Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) provides an effective machine learning (ML) architecture to protect data privacy in a distributed manner. However, the inevitable network asynchrony, the over-dependence on a central coordinator, and the lack of an open and fair incentive mechanism collectively hinder its further development. We propose \textsc{IronForge}, a new generation of FL framework, that features a Directed Acyclic Graph (DAG)-based data structure and eliminates the need for central coordinators to achieve fully decentralized operations. \textsc{IronForge} runs in a public and open network, and launches a fair incentive mechanism by enabling state consistency in the DAG, so that the system fits in networks where training resources are unevenly distributed. In addition, dedicated defense strategies against prevalent FL attacks on incentive fairness and data privacy are presented to ensure the security of \textsc{IronForge}. Experimental results based on a newly developed testbed FLSim highlight the superiority of \textsc{IronForge} to the existing prevalent FL frameworks under various specifications in performance, fairness, and security. To the best of our knowledge, \textsc{IronForge} is the first secure and fully decentralized FL framework that can be applied in open networks with realistic network and training settings.