Wang, Qimeng
Aneumo: A Large-Scale Comprehensive Synthetic Dataset of Aneurysm Hemodynamics
Li, Xigui, Zhou, Yuanye, Xiao, Feiyang, Guo, Xin, Zhang, Yichi, Jiang, Chen, Ge, Jianchao, Wang, Xiansheng, Wang, Qimeng, Zhang, Taiwei, Lin, Chensen, Cheng, Yuan, Qi, Yuan
Intracranial aneurysm (IA) is a common cerebrovascular disease that is usually asymptomatic but may cause severe subarachnoid hemorrhage (SAH) if ruptured. Although clinical practice is usually based on individual factors and morphological features of the aneurysm, its pathophysiology and hemodynamic mechanisms remain controversial. To address the limitations of current research, this study constructed a comprehensive hemodynamic dataset of intracranial aneurysms. The dataset is based on 466 real aneurysm models, and 10,000 synthetic models were generated by resection and deformation operations, including 466 aneurysm-free models and 9,534 deformed aneurysm models. The dataset also provides medical image-like segmentation mask files to support insightful analysis. In addition, the dataset contains hemodynamic data measured at eight steady-state flow rates (0.001 to 0.004 kg/s), including critical parameters such as flow velocity, pressure, and wall shear stress, providing a valuable resource for investigating aneurysm pathogenesis and clinical prediction. This dataset will help advance the understanding of the pathologic features and hemodynamic mechanisms of intracranial aneurysms and support in-depth research in related fields. Dataset hosted at https://github.com/Xigui-Li/Aneumo.
MoDification: Mixture of Depths Made Easy
Zhang, Chen, Zhong, Meizhi, Wang, Qimeng, Lu, Xuantao, Ye, Zheyu, Lu, Chengqiang, Gao, Yan, Hu, Yao, Chen, Kehai, Zhang, Min, Song, Dawei
Long-context efficiency has recently become a trending topic in serving large language models (LLMs). And mixture of depths (MoD) is proposed as a perfect fit to bring down both latency and memory. In this paper, however, we discover that MoD can barely transform existing LLMs without costly training over an extensive number of tokens. To enable the transformations from any LLMs to MoD ones, we showcase top-k operator in MoD should be promoted to threshold-p operator, and refinement to architecture and data should also be crafted along. All these designs form our method termed MoDification. Through a comprehensive set of experiments covering model scales from 3B to 70B, we exhibit MoDification strikes an excellent balance between efficiency and effectiveness. MoDification can achieve up to ~1.2x speedup in latency and ~1.8x reduction in memory compared to original LLMs especially in long-context applications.
Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents
Wu, Shiwei, Zhang, Chen, Gao, Yan, Wang, Qimeng, Xu, Tong, Hu, Yao, Chen, Enhong
Instructional documents are rich sources of knowledge for completing various tasks, yet their unique challenges in conversational question answering (CQA) have not been thoroughly explored. Existing benchmarks have primarily focused on basic factual question-answering from single narrative documents, making them inadequate for assessing a model`s ability to comprehend complex real-world instructional documents and provide accurate step-by-step guidance in daily life. To bridge this gap, we present InsCoQA, a novel benchmark tailored for evaluating large language models (LLMs) in the context of CQA with instructional documents. Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents, reflecting the intricate and multi-faceted nature of real-world instructional tasks. Additionally, to comprehensively assess state-of-the-art LLMs on the InsCoQA benchmark, we propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.