Goto

Collaborating Authors

 Wang, Qifei


Optical Diffusion Models for Image Generation

arXiv.org Artificial Intelligence

Diffusion models generate new samples by progressively decreasing the noise from the initially provided random distribution. This inference procedure generally utilizes a trained neural network numerous times to obtain the final output, creating significant latency and energy consumption on digital electronic hardware such as GPUs. In this study, we demonstrate that the propagation of a light beam through a semi-transparent medium can be programmed to implement a denoising diffusion model on image samples. This framework projects noisy image patterns through passive diffractive optical layers, which collectively only transmit the predicted noise term in the image. The optical transparent layers, which are trained with an online training approach, backpropagating the error to the analytical model of the system, are passive and kept the same across different steps of denoising. Hence this method enables high-speed image generation with minimal power consumption, benefiting from the bandwidth and energy efficiency of optical information processing.


PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models

arXiv.org Artificial Intelligence

Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.


Forward-Forward Training of an Optical Neural Network

arXiv.org Artificial Intelligence

Neural networks (NN) have demonstrated remarkable capabilities in various tasks, but their computation-intensive nature demands faster and more energy-efficient hardware implementations. Optics-based platforms, using technologies such as silicon photonics and spatial light modulators, offer promising avenues for achieving this goal. However, training multiple trainable layers in tandem with these physical systems poses challenges, as they are difficult to fully characterize and describe with differentiable functions, hindering the use of error backpropagation algorithm. The recently introduced Forward-Forward Algorithm (FFA) eliminates the need for perfect characterization of the learning system and shows promise for efficient training with large numbers of programmable parameters. The FFA does not require backpropagating an error signal to update the weights, rather the weights are updated by only sending information in one direction. The local loss function for each set of trainable weights enables low-power analog hardware implementations without resorting to metaheuristic algorithms or reinforcement learning. In this paper, we present an experiment utilizing multimode nonlinear wave propagation in an optical fiber demonstrating the feasibility of the FFA approach using an optical system. The results show that incorporating optical transforms in multilayer NN architectures trained with the FFA, can lead to performance improvements, even with a relatively small number of trainable weights. The proposed method offers a new path to the challenge of training optical NNs and provides insights into leveraging physical transformations for enhancing NN performance.


Multi-path Neural Networks for On-device Multi-domain Visual Classification

arXiv.org Artificial Intelligence

Learning multiple domains/tasks with a single model is important for improving data efficiency and lowering inference cost for numerous vision tasks, especially on resource-constrained mobile devices. However, hand-crafting a multi-domain/task model can be both tedious and challenging. This paper proposes a novel approach to automatically learn a multi-path network for multi-domain visual classification on mobile devices. The proposed multi-path network is learned from neural architecture search by applying one reinforcement learning controller for each domain to select the best path in the super-network created from a MobileNetV3-like search space. An adaptive balanced domain prioritization algorithm is proposed to balance optimizing the joint model on multiple domains simultaneously. The determined multi-path model selectively shares parameters across domains in shared nodes while keeping domain-specific parameters within non-shared nodes in individual domain paths. This approach effectively reduces the total number of parameters and FLOPS, encouraging positive knowledge transfer while mitigating negative interference across domains. Extensive evaluations on the Visual Decathlon dataset demonstrate that the proposed multi-path model achieves state-of-the-art performance in terms of accuracy, model size, and FLOPS against other approaches using MobileNetV3-like architectures. Furthermore, the proposed method improves average accuracy over learning single-domain models individually, and reduces the total number of parameters and FLOPS by 78% and 32% respectively, compared to the approach that simply bundles single-domain models for multi-domain learning.