Wang, Qifan
COFFEE: Counterfactual Fairness for Personalized Text Generation in Explainable Recommendation
Wang, Nan, Wang, Qifan, Wang, Yi-Chia, Sanjabi, Maziar, Liu, Jingzhou, Firooz, Hamed, Wang, Hongning, Nie, Shaoliang
As language models become increasingly integrated into our digital lives, Personalized Text Generation (PTG) has emerged as a pivotal component with a wide range of applications. However, the bias inherent in user written text, often used for PTG model training, can inadvertently associate different levels of linguistic quality with users' protected attributes. The model can inherit the bias and perpetuate inequality in generating text w.r.t. users' protected attributes, leading to unfair treatment when serving users. In this work, we investigate fairness of PTG in the context of personalized explanation generation for recommendations. We first discuss the biases in generated explanations and their fairness implications. To promote fairness, we introduce a general framework to achieve measure-specific counterfactual fairness in explanation generation. Extensive experiments and human evaluations demonstrate the effectiveness of our method.
Dual-Feedback Knowledge Retrieval for Task-Oriented Dialogue Systems
Shi, Tianyuan, Li, Liangzhi, Lin, Zijian, Yang, Tao, Quan, Xiaojun, Wang, Qifan
Efficient knowledge retrieval plays a pivotal role in ensuring the success of end-to-end task-oriented dialogue systems by facilitating the selection of relevant information necessary to fulfill user requests. However, current approaches generally integrate knowledge retrieval and response generation, which poses scalability challenges when dealing with extensive knowledge bases. Taking inspiration from open-domain question answering, we propose a retriever-generator architecture that harnesses a retriever to retrieve pertinent knowledge and a generator to generate system responses.~Due to the lack of retriever training labels, we propose relying on feedback from the generator as pseudo-labels to train the retriever. To achieve this, we introduce a dual-feedback mechanism that generates both positive and negative feedback based on the output of the generator. Our method demonstrates superior performance in task-oriented dialogue tasks, as evidenced by experimental results on three benchmark datasets.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Deng, Boyi, Wang, Wenjie, Feng, Fuli, Deng, Yang, Wang, Qifan, He, Xiangnan
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
Federated Generalization via Information-Theoretic Distribution Diversification
Wu, Zheshun, Xu, Zenglin, Zeng, Dun, Wang, Qifan
Federated Learning (FL) has surged in prominence due to its capability of collaborative model training without direct data sharing. However, the vast disparity in local data distributions among clients, often termed the non-Independent Identically Distributed (non-IID) challenge, poses a significant hurdle to FL's generalization efficacy. The scenario becomes even more complex when not all clients participate in the training process, a common occurrence due to unstable network connections or limited computational capacities. This can greatly complicate the assessment of the trained models' generalization abilities. While a plethora of recent studies has centered on the generalization gap pertaining to unseen data from participating clients with diverse distributions, the divergence between the training distributions of participating clients and the testing distributions of non-participating ones has been largely overlooked. In response, our paper unveils an information-theoretic generalization framework for FL. Specifically, it quantifies generalization errors by evaluating the information entropy of local distributions and discerning discrepancies across these distributions. Inspired by our deduced generalization bounds, we introduce a weighted aggregation approach and a duo of client selection strategies. These innovations aim to bolster FL's generalization prowess by encompassing a more varied set of client data distributions. Our extensive empirical evaluations reaffirm the potency of our proposed methods, aligning seamlessly with our theoretical construct.
Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models
Jiang, Song, Shakeri, Zahra, Chan, Aaron, Sanjabi, Maziar, Firooz, Hamed, Xia, Yinglong, Akyildiz, Bugra, Sun, Yizhou, Li, Jinchao, Wang, Qifan, Celikyilmaz, Asli
Chain-of-thought (CoT) prompting, which offers step-by-step problem-solving rationales, has impressively unlocked the reasoning potential of large language models (LLMs). Yet, the standard CoT is less effective in problems demanding multiple reasoning steps. This limitation arises from the complex reasoning process in multi-step problems: later stages often depend on the results of several steps earlier, not just the results of the immediately preceding step. Such complexities suggest the reasoning process is naturally represented as a graph. The almost linear and straightforward structure of CoT prompting, however, struggles to capture this complex reasoning graph. To address this challenge, we propose Residual Connection Prompting (RESPROMPT), a new prompting strategy that advances multi-step reasoning in LLMs. Our key idea is to reconstruct the reasoning graph within prompts. We achieve this by integrating necessary connections-links present in the reasoning graph but missing in the linear CoT flow-into the prompts. Termed "residual connections", these links are pivotal in morphing the linear CoT structure into a graph representation, effectively capturing the complex reasoning graphs inherent in multi-step problems. We evaluate RESPROMPT on six benchmarks across three diverse domains: math, sequential, and commonsense reasoning. For the open-sourced LLaMA family of models, RESPROMPT yields a significant average reasoning accuracy improvement of 12.5% on LLaMA-65B and 6.8% on LLaMA2-70B. Breakdown analysis further highlights RESPROMPT particularly excels in complex multi-step reasoning: for questions demanding at least five reasoning steps, RESPROMPT outperforms the best CoT based benchmarks by a remarkable average improvement of 21.1% on LLaMA-65B and 14.3% on LLaMA2-70B. Through extensive ablation studies and analyses, we pinpoint how to most effectively build residual connections.
On the Equivalence of Graph Convolution and Mixup
Han, Xiaotian, Zeng, Hanqing, Chen, Yu, Nie, Shaoliang, Liu, Jingzhou, Narang, Kanika, Shakeri, Zahra, Sankararaman, Karthik Abinav, Jiang, Song, Khabsa, Madian, Wang, Qifan, Hu, Xia
This paper investigates the relationship between graph convolution and Mixup techniques. Graph convolution in a graph neural network involves aggregating features from neighboring samples to learn representative features for a specific node or sample. On the other hand, Mixup is a data augmentation technique that generates new examples by averaging features and one-hot labels from multiple samples. One commonality between these techniques is their utilization of information from multiple samples to derive feature representation. This study aims to explore whether a connection exists between these two approaches. Our investigation reveals that, under two mild conditions, graph convolution can be viewed as a specialized form of Mixup that is applied during both the training and testing phases. The two conditions are: 1) \textit{Homophily Relabel} - assigning the target node's label to all its neighbors, and 2) \textit{Test-Time Mixup} - Mixup the feature during the test time. We establish this equivalence mathematically by demonstrating that graph convolution networks (GCN) and simplified graph convolution (SGC) can be expressed as a form of Mixup. We also empirically verify the equivalence by training an MLP using the two conditions to achieve comparable performance.
mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view Contrastive Learning
Mo, Ying, Yang, Jian, Liu, Jiahao, Wang, Qifan, Chen, Ruoyu, Wang, Jingang, Li, Zhoujun
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora, especially for non-English data. While prior efforts mainly focus on data-driven transfer methods, a significant aspect that has not been fully explored is aligning both semantic and token-level representations across diverse languages. In this paper, we propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER). Specifically, we reframe the CrossNER task into a problem of recognizing relationships between pairs of tokens. This approach taps into the inherent contextual nuances of token-to-token connections within entities, allowing us to align representations across different languages. A multi-view contrastive learning framework is introduced to encompass semantic contrasts between source, codeswitched, and target sentences, as well as contrasts among token-to-token relations. By enforcing agreement within both semantic and relational spaces, we minimize the gap between source sentences and their counterparts of both codeswitched and target sentences. This alignment extends to the relationships between diverse tokens, enhancing the projection of entities across languages. We further augment CrossNER by combining self-training with labeled source data and unlabeled target data. Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches. It achieves a substantial increase of nearly +2.0 $F_1$ scores across a broad spectrum and establishes itself as the new state-of-the-art performer.
LLM-Rec: Personalized Recommendation via Prompting Large Language Models
Lyu, Hanjia, Jiang, Song, Zeng, Hanqing, Wang, Qifan, Zhang, Si, Chen, Ren, Leung, Chris, Tang, Jiajie, Xia, Yinglong, Luo, Jiebo
We investigate various prompting strategies for enhancing personalized recommendation performance with large language models (LLMs) through input augmentation. Our proposed approach, termed LLM-Rec, encompasses four distinct prompting strategies: (1) basic prompting, (2) recommendation-driven prompting, (3) engagement-guided prompting, and (4) recommendation-driven + engagement-guided prompting. Our empirical experiments show that incorporating the augmented input text generated by LLM leads to improved recommendation performance. Recommendation-driven and engagement-guided prompting strategies are found to elicit LLM's understanding of global and local item characteristics. This finding highlights the importance of leveraging diverse prompts and input augmentation techniques to enhance the recommendation capabilities with LLMs.
Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation
Wang, Chenxu, Feng, Fuli, Zhang, Yang, Wang, Qifan, Hu, Xunhan, He, Xiangnan
Historical interactions are the default choice for recommender model training, which typically exhibit high sparsity, i.e., most user-item pairs are unobserved missing data. A standard choice is treating the missing data as negative training samples and estimating interaction likelihood between user-item pairs along with the observed interactions. In this way, some potential interactions are inevitably mislabeled during training, which will hurt the model fidelity, hindering the model to recall the mislabeled items, especially the long-tail ones. In this work, we investigate the mislabeling issue from a new perspective of aleatoric uncertainty, which describes the inherent randomness of missing data. The randomness pushes us to go beyond merely the interaction likelihood and embrace aleatoric uncertainty modeling. Towards this end, we propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework that consists of a new uncertainty estimator along with a normal recommender model. According to the theory of aleatoric uncertainty, we derive a new recommendation objective to learn the estimator. As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty, which is demonstrated to improve the recommendation performance of less popular items without sacrificing the overall performance. We instantiate AUR on three representative recommender models: Matrix Factorization (MF), LightGCN, and VAE from mainstream model architectures. Extensive results on two real-world datasets validate the effectiveness of AUR w.r.t. better recommendation results, especially on long-tail items.
E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning
Han, Cheng, Wang, Qifan, Cui, Yiming, Cao, Zhiwen, Wang, Wenguan, Qi, Siyuan, Liu, Dongfang
As the size of transformer-based models continues to grow, fine-tuning these large-scale pretrained vision models for new tasks has become increasingly parameter-intensive. Parameter-efficient learning has been developed to reduce the number of tunable parameters during fine-tuning. Although these methods show promising results, there is still a significant performance gap compared to full fine-tuning. To address this challenge, we propose an Effective and Efficient Visual Prompt Tuning (E^2VPT) approach for large-scale transformer-based model adaptation. Specifically, we introduce a set of learnable key-value prompts and visual prompts into self-attention and input layers, respectively, to improve the effectiveness of model fine-tuning. Moreover, we design a prompt pruning procedure to systematically prune low importance prompts while preserving model performance, which largely enhances the model's efficiency. Empirical results demonstrate that our approach outperforms several state-of-the-art baselines on two benchmarks, with considerably low parameter usage (e.g., 0.32% of model parameters on VTAB-1k). Our code is available at https://github.com/ChengHan111/E2VPT.