Plotting

 Wang, Qifan


Visual Fourier Prompt Tuning

arXiv.org Artificial Intelligence

With the scale of vision Transformer-based models continuing to grow, finetuning these large-scale pretrained models for new tasks has become increasingly parameter-intensive. Visual prompt tuning is introduced as a parameter-efficient finetuning (PEFT) method to this trend. Despite its successes, a notable research challenge persists within almost all PEFT approaches: significant performance degradation is observed when there is a substantial disparity between the datasets applied in pretraining and finetuning phases. To address this challenge, we draw inspiration from human visual cognition, and propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models. Our approach innovatively incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information. Apart from its inherent simplicity and intuitiveness, VFPT exhibits superior performance across all datasets, offering a general solution to dataset challenges, irrespective of data disparities. Empirical results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks, with low parameter usage (e.g., 0.57% of model parameters on VTAB-1k) and notable performance enhancements (e.g., 73.20% of mean accuracy on VTAB-1k). Our code is avaliable at https://github.com/runtsang/VFPT.


M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning

arXiv.org Artificial Intelligence

Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains, with increasing emphasis on enhancing their zero-shot generalization capabilities for unseen tasks across various modalities. Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks. As the scale of MLLMs continues to grow, parameter-efficient finetuning becomes increasingly critical. However, most existing parameter-efficient approaches focus only on single modalities and often overlook the multimodal characteristics during finetuning. In this work, we introduce a novel Multimodal Prompt Tuning (M$^2$PT) approach for efficient instruction tuning of MLLMs. M$^2$PT effectively integrates visual and textual prompts into the vision encoder and language processor respectively during finetuning, facilitating the extraction and alignment of features across modalities. Empirical results on various multimodal evaluation datasets demonstrate the superior performance of our approach compared to several state-of-the-art baselines. A comprehensive set of ablation studies validates the effectiveness of our prompt design and the efficiency of our approach.


FIRP: Faster LLM inference via future intermediate representation prediction

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have shown remarkable performance across a wide range of tasks. Despite this, the auto-regressive nature of LLM decoding, which generates only a single token per forward propagation, fails to fully exploit the parallel computational power of GPUs, leading to considerable latency. To address this, we introduce a novel speculative decoding method named FIRP which generates multiple tokens instead of one at each decoding step. We achieve this by predicting the intermediate hidden states of future tokens (tokens have not been decoded yet) and then using these pseudo hidden states to decode future tokens, specifically, these pseudo hidden states are predicted with simple linear transformation in intermediate layers of LLMs. Once predicted, they participate in the computation of all the following layers, thereby assimilating richer semantic information. As the layers go deeper, the semantic gap between pseudo and real hidden states is narrowed and it becomes feasible to decode future tokens with high accuracy. To validate the effectiveness of FIRP, we conduct extensive experiments, showing a speedup ratio of 1.9x-3x in several models and datasets, analytical experiments also prove our motivations.


RoRA-VLM: Robust Retrieval-Augmented Vision Language Models

arXiv.org Artificial Intelligence

Current vision-language models (VLMs) still exhibit inferior performance on knowledge-intensive tasks, primarily due to the challenge of accurately encoding all the associations between visual objects and scenes to their corresponding entities and background knowledge. While retrieval augmentation methods offer an efficient way to integrate external knowledge, extending them to vision-language domain presents unique challenges in (1) precisely retrieving relevant information from external sources due to the inherent discrepancy within the multimodal queries, and (2) being resilient to the irrelevant, extraneous and noisy information contained in the retrieved multimodal knowledge snippets. In this work, we introduce RORA-VLM, a novel and robust retrieval augmentation framework specifically tailored for VLMs, with two key innovations: (1) a 2-stage retrieval process with image-anchored textual-query expansion to synergistically combine the visual and textual information in the query and retrieve the most relevant multimodal knowledge snippets; and (2) a robust retrieval augmentation method that strengthens the resilience of VLMs against irrelevant information in the retrieved multimodal knowledge by injecting adversarial noises into the retrieval-augmented training process, and filters out extraneous visual information, such as unrelated entities presented in images, via a query-oriented visual token refinement strategy. We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets. Our results demonstrate that with a minimal amount of training instance, RORA-VLM enables the base model to achieve significant performance improvement and constantly outperform state-of-the-art retrieval-augmented VLMs on all benchmarks while also exhibiting a novel zero-shot domain transfer capability.


Grounded-VideoLLM: Sharpening Fine-grained Temporal Grounding in Video Large Language Models

arXiv.org Artificial Intelligence

Video Large Language Models (Video-LLMs) have demonstrated remarkable capabilities in coarse-grained video understanding, however, they struggle with fine-grained temporal grounding. In this paper, we introduce Grounded-VideoLLM, a novel Video-LLM adept at perceiving and reasoning over specific video moments in a fine-grained manner. We identify that current Video-LLMs have limitations for fine-grained video understanding since they lack effective temporal modeling and timestamp representation. In light of this, we sharpen our model by incorporating (1) an additional temporal stream to encode the relationships between frames and (2) discrete temporal tokens enriched with specific time knowledge to represent timestamps. To optimize the training of Grounded-VideoLLM, we employ a multi-stage training scheme, beginning with simple video-captioning tasks and progressively introducing video temporal grounding tasks of increasing complexity. To further enhance Grounded-VideoLLM's temporal reasoning capability, we also curate a grounded VideoQA dataset by an automatic annotation pipeline. Extensive experiments demonstrate that Grounded-VideoLLM not only excels in fine-grained grounding tasks such as temporal sentence grounding, dense video captioning, and grounded VideoQA, but also shows great potential as a versatile video assistant for general video understanding.


Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.


Inertial Confinement Fusion Forecasting via LLMs

arXiv.org Artificial Intelligence

Controlled fusion energy is deemed pivotal for the advancement of human civilization. In this study, we introduce $\textbf{Fusion-LLM}$, a novel integration of Large Language Models (LLMs) with classical reservoir computing paradigms tailored to address challenges in Inertial Confinement Fusion ($\texttt{ICF}$). Our approach offers several key contributions: Firstly, we propose the $\textit{LLM-anchored Reservoir}$, augmented with a fusion-specific prompt, enabling accurate forecasting of hot electron dynamics during implosion. Secondly, we develop $\textit{Signal-Digesting Channels}$ to temporally and spatially describe the laser intensity across time, capturing the unique characteristics of $\texttt{ICF}$ inputs. Lastly, we design the $\textit{Confidence Scanner}$ to quantify the confidence level in forecasting, providing valuable insights for domain experts to design the $\texttt{ICF}$ process. Extensive experiments demonstrate the superior performance of our method, achieving 1.90 CAE, 0.14 $\texttt{top-1}$ MAE, and 0.11 $\texttt{top-5}$ MAE in predicting Hard X-ray ($\texttt{HXR}$) energies of $\texttt{ICF}$ tasks, which presents state-of-the-art comparisons against concurrent best systems. Additionally, we present $\textbf{Fusion4AI}$, the first $\texttt{ICF}$ benchmark based on physical experiments, aimed at fostering novel ideas in plasma physics research and enhancing the utility of LLMs in scientific exploration. Overall, our work strives to forge an innovative synergy between AI and plasma science for advancing fusion energy.


Lateralization LoRA: Interleaved Instruction Tuning with Modality-Specialized Adaptations

arXiv.org Artificial Intelligence

Recent advancements in Vision-Language Models (VLMs) have led to the development of Vision-Language Generalists (VLGs) capable of understanding and generating interleaved images and text. Despite these advances, VLGs still struggle to follow user instructions for interleaved text and image generation. To address this issue, we introduce LeafInstruct, the first open-sourced interleaved instruction tuning data with over 30,000 high-quality instances across more than 10 domains. Due to the extensive size of existing VLGs, we opt for parameter-efficient tuning. However, we observe that VLGs tuned with a standard LoRA typically exhibit inferior performance in interleaved text-image generation. We attribute this problem to modality interference and the lack of modality-specialized adaptation design. Hence, we propose Lateralization LoRA, a novel modality-specialized adaptation method inspired by the concept of brain lateralization. Lateralization LoRA employs a hybrid approach, combining the traditional linear LoRA and a Convolutional LoRA for generating text and images, enabling the generation of high-quality text and images by leveraging modality-specific structures and parameter sets. We perform instruction tuning of the VLG (i.e., EMU2) using Lateralization LoRA on the LeafInstruct dataset. Extensive experiments demonstrate that EMU2 tuned with Lateralization LoRA achieve state-of-the-art performance, significantly surpassing baseline models in complex interleaved tasks.


Direct Multi-Turn Preference Optimization for Language Agents

arXiv.org Artificial Intelligence

Adapting Large Language Models (LLMs) for agent tasks is critical in developing language agents. Direct Preference Optimization (DPO) is a promising technique for this adaptation with the alleviation of compounding errors, offering a means to directly optimize Reinforcement Learning (RL) objectives. However, applying DPO to multi-turn tasks presents challenges due to the inability to cancel the partition function. Overcoming this obstacle involves making the partition function independent of the current state and addressing length disparities between preferred and dis-preferred trajectories. In this light, we replace the policy constraint with the state-action occupancy measure constraint in the RL objective and add length normalization to the Bradley-Terry model, yielding a novel loss function named DMPO for multi-turn agent tasks with theoretical explanations. Extensive experiments on three multi-turn agent task datasets confirm the effectiveness and superiority of the DMPO loss.


C-ICL: Contrastive In-context Learning for Information Extraction

arXiv.org Artificial Intelligence

There has been increasing interest in exploring the capabilities of advanced large language models (LLMs) in the field of information extraction (IE), specifically focusing on tasks related to named entity recognition (NER) and relation extraction (RE). Although researchers are exploring the use of few-shot information extraction through in-context learning with LLMs, they tend to focus only on using correct or positive examples for demonstration, neglecting the potential value of incorporating incorrect or negative examples into the learning process. In this paper, we present c-ICL, a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations. This approach enhances the ability of LLMs to extract entities and relations by utilizing prompts that incorporate not only the positive samples but also the reasoning behind them. This method allows for the identification and correction of potential interface errors. Specifically, our proposed method taps into the inherent contextual information and valuable information in hard negative samples and the nearest positive neighbors to the test and then applies the in-context learning demonstrations based on LLMs. Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods, delivering substantial enhancements in performance across a broad spectrum of related tasks. These improvements are noteworthy, showcasing the versatility of our approach in miscellaneous scenarios.