Goto

Collaborating Authors

 Wang, Pengjie


Gradient Deconfliction via Orthogonal Projections onto Subspaces For Multi-task Learning

arXiv.org Artificial Intelligence

Although multi-task learning (MTL) has been a preferred approach and successfully applied in many real-world scenarios, MTL models are not guaranteed to outperform single-task models on all tasks mainly due to the negative effects of conflicting gradients among the tasks. In this paper, we fully examine the influence of conflicting gradients and further emphasize the importance and advantages of achieving non-conflicting gradients which allows simple but effective trade-off strategies among the tasks with stable performance. Based on our findings, we propose the Gradient Deconfliction via Orthogonal Projections onto Subspaces (GradOPS) spanned by other task-specific gradients. Our method not only solves all conflicts among the tasks, but can also effectively search for diverse solutions towards different trade-off preferences among the tasks. Theoretical analysis on convergence is provided, and performance of our algorithm is fully testified on multiple benchmarks in various domains. Results demonstrate that our method can effectively find multiple state-of-the-art solutions with different trade-off strategies among the tasks on multiple datasets.


MIM: Multi-modal Content Interest Modeling Paradigm for User Behavior Modeling

arXiv.org Artificial Intelligence

Click-Through Rate (CTR) prediction is a crucial task in recommendation systems, online searches, and advertising platforms, where accurately capturing users' real interests in content is essential for performance. However, existing methods heavily rely on ID embeddings, which fail to reflect users' true preferences for content such as images and titles. This limitation becomes particularly evident in cold-start and long-tail scenarios, where traditional approaches struggle to deliver effective results. To address these challenges, we propose a novel Multi-modal Content Interest Modeling paradigm (MIM), which consists of three key stages: Pre-training, Content-Interest-Aware Supervised Fine-Tuning (C-SFT), and Content-Interest-Aware UBM (CiUBM). The pre-training stage adapts foundational models to domain-specific data, enabling the extraction of high-quality multi-modal embeddings. The C-SFT stage bridges the semantic gap between content and user interests by leveraging user behavior signals to guide the alignment of embeddings with user preferences. Finally, the CiUBM stage integrates multi-modal embeddings and ID-based collaborative filtering signals into a unified framework. Comprehensive offline experiments and online A/B tests conducted on the Taobao, one of the world's largest e-commerce platforms, demonstrated the effectiveness and efficiency of MIM method. The method has been successfully deployed online, achieving a significant increase of +14.14% in CTR and +4.12% in RPM, showcasing its industrial applicability and substantial impact on platform performance. To promote further research, we have publicly released the code and dataset at https://pan.quark.cn/s/8fc8ec3e74f3.


Explainable LLM-driven Multi-dimensional Distillation for E-Commerce Relevance Learning

arXiv.org Artificial Intelligence

Effective query-item relevance modeling is pivotal for enhancing user experience and safeguarding user satisfaction in e-commerce search systems. Recently, benefiting from the vast inherent knowledge, Large Language Model (LLM) approach demonstrates strong performance and long-tail generalization ability compared with previous neural-based specialized relevance learning methods. Though promising, current LLM-based methods encounter the following inadequacies in practice: First, the massive parameters and computational demands make it difficult to be deployed online. Second, distilling LLM models to online models is a feasible direction, but the LLM relevance modeling is a black box, and its rich intrinsic knowledge is difficult to extract and apply online. To improve the interpretability of LLM and boost the performance of online relevance models via LLM, we propose an Explainable LLM-driven Multi-dimensional Distillation framework for e-commerce relevance learning, which comprises two core components: (1) An Explainable LLM for relevance modeling (ELLM-rele), which decomposes the relevance learning into intermediate steps and models relevance learning as a Chain-of-Thought (CoT) reasoning, thereby enhancing both interpretability and performance of LLM. (2) A Multi-dimensional Knowledge Distillation (MKD) architecture that transfers the knowledge of ELLM-rele to current deployable interaction-based and representation-based student models from both the relevance score distribution and CoT reasoning aspects. Through distilling the probabilistic and CoT reasoning knowledge, MKD improves both the semantic interaction and long-tail generalization abilities of student models. Extensive offline evaluations and online experiments on Taobao search ad scene demonstrate that our proposed framework significantly enhances e-commerce relevance learning performance and user experience.


An open dataset for the evolution of oracle bone characters: EVOBC

arXiv.org Artificial Intelligence

The earliest extant Chinese characters originate from oracle bone inscriptions, which are closely related to other East Asian languages. These inscriptions hold immense value for anthropology and archaeology. However, deciphering oracle bone script remains a formidable challenge, with only approximately 1,600 of the over 4,500 extant characters elucidated to date. Further scholarly investigation is required to comprehensively understand this ancient writing system. Artificial Intelligence technology is a promising avenue for deciphering oracle bone characters, particularly concerning their evolution. However, one of the challenges is the lack of datasets mapping the evolution of these characters over time. In this study, we systematically collected ancient characters from authoritative texts and websites spanning six historical stages: Oracle Bone Characters - OBC (15th century B.C.), Bronze Inscriptions - BI (13th to 221 B.C.), Seal Script - SS (11th to 8th centuries B.C.), Spring and Autumn period Characters - SAC (770 to 476 B.C.), Warring States period Characters - WSC (475 B.C. to 221 B.C.), and Clerical Script - CS (221 B.C. to 220 A.D.). Subsequently, we constructed an extensive dataset, namely EVolution Oracle Bone Characters (EVOBC), consisting of 229,170 images representing 13,714 distinct character categories. We conducted validation and simulated deciphering on the constructed dataset, and the results demonstrate its high efficacy in aiding the study of oracle bone script. This openly accessible dataset aims to digitalize ancient Chinese scripts across multiple eras, facilitating the decipherment of oracle bone script by examining the evolution of glyph forms.


APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction

arXiv.org Artificial Intelligence

In many web applications, deep learning-based CTR prediction models (deep CTR models for short) are widely adopted. Traditional deep CTR models learn patterns in a static manner, i.e., the network parameters are the same across all the instances. However, such a manner can hardly characterize each of the instances which may have different underlying distributions. It actually limits the representation power of deep CTR models, leading to sub-optimal results. In this paper, we propose an efficient, effective, and universal module, named as Adaptive Parameter Generation network (APG), which can dynamically generate parameters for deep CTR models on-the-fly based on different instances. Extensive experimental evaluation results show that APG can be applied to a variety of deep CTR models and significantly improve their performance. Meanwhile, APG can reduce the time cost by 38.7\% and memory usage by 96.6\% compared to a regular deep CTR model. We have deployed APG in the industrial sponsored search system and achieved 3\% CTR gain and 1\% RPM gain respectively.


Learning Effective and Efficient Embedding via an Adaptively-Masked Twins-based Layer

arXiv.org Artificial Intelligence

Embedding learning for categorical features is crucial for the deep learning-based recommendation models (DLRMs). Each feature value is mapped to an embedding vector via an embedding learning process. Conventional methods configure a fixed and uniform embedding size to all feature values from the same feature field. However, such a configuration is not only sub-optimal for embedding learning but also memory costly. Existing methods that attempt to resolve these problems, either rule-based or neural architecture search (NAS)-based, need extensive efforts on the human design or network training. They are also not flexible in embedding size selection or in warm-start-based applications. In this paper, we propose a novel and effective embedding size selection scheme. Specifically, we design an Adaptively-Masked Twins-based Layer (AMTL) behind the standard embedding layer. AMTL generates a mask vector to mask the undesired dimensions for each embedding vector. The mask vector brings flexibility in selecting the dimensions and the proposed layer can be easily added to either untrained or trained DLRMs. Extensive experimental evaluations show that the proposed scheme outperforms competitive baselines on all the benchmark tasks, and is also memory-efficient, saving 60\% memory usage without compromising any performance metrics.


Binary Code based Hash Embedding for Web-scale Applications

arXiv.org Artificial Intelligence

Nowadays, deep learning models are widely adopted in web-scale applications such as recommender systems, and online advertising. In these applications, embedding learning of categorical features is crucial to the success of deep learning models. In these models, a standard method is that each categorical feature value is assigned a unique embedding vector which can be learned and optimized. Although this method can well capture the characteristics of the categorical features and promise good performance, it can incur a huge memory cost to store the embedding table, especially for those web-scale applications. Such a huge memory cost significantly holds back the effectiveness and usability of EDRMs. In this paper, we propose a binary code based hash embedding method which allows the size of the embedding table to be reduced in arbitrary scale without compromising too much performance. Experimental evaluation results show that one can still achieve 99\% performance even if the embedding table size is reduced 1000$\times$ smaller than the original one with our proposed method.


Towards a Better Tradeoff between Effectiveness and Efficiency in Pre-Ranking: A Learnable Feature Selection based Approach

arXiv.org Artificial Intelligence

In real-world search, recommendation, and advertising systems, the multi-stage ranking architecture is commonly adopted. Such architecture usually consists of matching, pre-ranking, ranking, and re-ranking stages. In the pre-ranking stage, vector-product based models with representation-focused architecture are commonly adopted to account for system efficiency. However, it brings a significant loss to the effectiveness of the system. In this paper, a novel pre-ranking approach is proposed which supports complicated models with interaction-focused architecture. It achieves a better tradeoff between effectiveness and efficiency by utilizing the proposed learnable Feature Selection method based on feature Complexity and variational Dropout (FSCD). Evaluations in a real-world e-commerce sponsored search system for a search engine demonstrate that utilizing the proposed pre-ranking, the effectiveness of the system is significantly improved. Moreover, compared to the systems with conventional pre-ranking models, an identical amount of computational resource is consumed.


Explicit Semantic Cross Feature Learning via Pre-trained Graph Neural Networks for CTR Prediction

arXiv.org Artificial Intelligence

Cross features play an important role in click-through rate (CTR) prediction. Most of the existing methods adopt a DNN-based model to capture the cross features in an implicit manner. These implicit methods may lead to a sub-optimized performance due to the limitation in explicit semantic modeling. Although traditional statistical explicit semantic cross features can address the problem in these implicit methods, it still suffers from some challenges, including lack of generalization and expensive memory cost. Few works focus on tackling these challenges. In this paper, we take the first step in learning the explicit semantic cross features and propose Pre-trained Cross Feature learning Graph Neural Networks (PCF-GNN), a GNN based pre-trained model aiming at generating cross features in an explicit fashion. Extensive experiments are conducted on both public and industrial datasets, where PCF-GNN shows competence in both performance and memory-efficiency in various tasks.