Goto

Collaborating Authors

 Wang, Peisong


S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning

arXiv.org Artificial Intelligence

Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S$^2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S$^2$R. Our code and data are available at https://github.com/NineAbyss/S2R.


FastGL: A GPU-Efficient Framework for Accelerating Sampling-Based GNN Training at Large Scale

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have shown great superiority on non-Euclidean graph data, achieving ground-breaking performance on various graph-related tasks. As a practical solution to train GNN on large graphs with billions of nodes and edges, the sampling-based training is widely adopted by existing training frameworks. However, through an in-depth analysis, we observe that the efficiency of existing sampling-based training frameworks is still limited due to the key bottlenecks lying in all three phases of sampling-based training, i.e., subgraph sample, memory IO, and computation. To this end, we propose FastGL, a GPU-efficient Framework for accelerating sampling-based training of GNN at Large scale by simultaneously optimizing all above three phases, taking into account both GPU characteristics and graph structure. Specifically, by exploiting the inherent overlap within graph structures, FastGL develops the Match-Reorder strategy to reduce the data traffic, which accelerates the memory IO without incurring any GPU memory overhead. Additionally, FastGL leverages a Memory-Aware computation method, harnessing the GPU memory's hierarchical nature to mitigate irregular data access during computation. FastGL further incorporates the Fused-Map approach aimed at diminishing the synchronization overhead during sampling. Extensive experiments demonstrate that FastGL can achieve an average speedup of 11.8x, 2.2x and 1.5x over the state-of-the-art frameworks PyG, DGL, and GNNLab, respectively.Our code is available at https://github.com/a1bc2def6g/fastgl-ae.


GLBench: A Comprehensive Benchmark for Graph with Large Language Models

arXiv.org Artificial Intelligence

The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios.


ZeroG: Investigating Cross-dataset Zero-shot Transferability in Graphs

arXiv.org Artificial Intelligence

With the development of foundation models such as large language models, zero-shot transfer learning has become increasingly significant. This is highlighted by the generative capabilities of NLP models like GPT-4, and the retrieval-based approaches of CV models like CLIP, both of which effectively bridge the gap between seen and unseen data. In the realm of graph learning, the continuous emergence of new graphs and the challenges of human labeling also amplify the necessity for zero-shot transfer learning, driving the exploration of approaches that can generalize across diverse graph data without necessitating dataset-specific and label-specific fine-tuning. In this study, we extend such paradigms to zero-shot transferability in graphs by introducing ZeroG, a new framework tailored to enable cross-dataset generalization. Addressing the inherent challenges such as feature misalignment, mismatched label spaces, and negative transfer, we leverage a language model to encode both node attributes and class semantics, ensuring consistent feature dimensions across datasets. We also propose a prompt-based subgraph sampling module that enriches the semantic information and structure information of extracted subgraphs using prompting nodes and neighborhood aggregation, respectively. We further adopt a lightweight fine-tuning strategy that reduces the risk of overfitting and maintains the zero-shot learning efficacy of the language model. The results underscore the effectiveness of our model in achieving significant cross-dataset zero-shot transferability, opening pathways for the development of graph foundation models. Codes and data are available at https://github.com/NineAbyss/ZeroG.


TernaryLLM: Ternarized Large Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable performance on Natural Language Processing (NLP) tasks, but they are hindered by high computational costs and memory requirements. Ternarization, an extreme form of quantization, offers a solution by reducing memory usage and enabling energy-efficient floating-point additions. However, applying ternarization to LLMs faces challenges stemming from outliers in both weights and activations. In this work, observing asymmetric outliers and non-zero means in weights, we introduce Dual Learnable Ternarization (DLT), which enables both scales and shifts to be learnable. We also propose Outlier-Friendly Feature Knowledge Distillation (OFF) to recover the information lost in extremely low-bit quantization. The proposed OFF can incorporate semantic information and is insensitive to outliers. At the core of OFF is maximizing the mutual information between features in ternarized and floating-point models using cosine similarity. Extensive experiments demonstrate that our TernaryLLM surpasses previous low-bit quantization methods on the standard text generation and zero-shot benchmarks for different LLM families. Specifically, for one of the most powerful open-source models, LLaMA-3, our approach (W1.58A16) outperforms the previous state-of-the-art method (W2A16) by 5.8 in terms of perplexity on C4 and by 8.2% in terms of average accuracy on zero-shot tasks.


A Survey of Graph Meets Large Language Model: Progress and Future Directions

arXiv.org Artificial Intelligence

Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.


Generative Zero-shot Network Quantization

arXiv.org Artificial Intelligence

Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration. We show that, for high-level image recognition tasks, we can further reconstruct "realistic" images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data. Inspired by the popular VAE/GAN methods, we regard the zero-shot optimization process of synthetic images as generative modeling to match the distribution of BN statistics. The generated images serve as a calibration set for the following zero-shot network quantizations. Our method meets the needs for quantizing models based on sensitive information, \textit{e.g.,} due to privacy concerns, no data is available. Extensive experiments on benchmark datasets show that, with the help of generated data, our approach consistently outperforms existing data-free quantization methods.


From Hashing to CNNs: Training Binary Weight Networks via Hashing

AAAI Conferences

Deep convolutional neural networks (CNNs) have shown appealing performance on various computer vision tasks in recent years. This motivates people to deploy CNNs to real-world applications. However, most of state-of-art CNNs require large memory and computational resources, which hinders the deployment on mobile devices. Recent studies show that low-bit weight representation can reduce much storage and memory demand, and also can achieve efficient network inference. To achieve this goal, we propose a novel approach named BWNH to train Binary Weight Networks via Hashing. In this paper, we first reveal the strong connection between inner-product preserving hashing and binary weight networks, and show that training binary weight networks can be intrinsically regarded as a hashing problem. Based on this perspective, we propose an alternating optimization method to learn the hash codes instead of directly learning binary weights. Extensive experiments on CIFAR10, CIFAR100 and ImageNet demonstrate that our proposed BWNH outperforms current state-of-art by a large margin.