Wang, Peidong
TeleAntiFraud-28k: An Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection
Ma, Zhiming, Wang, Peidong, Huang, Minhua, Wang, Jingpeng, Wu, Kai, Lv, Xiangzhao, Pang, Yachun, Yang, Yin, Tang, Wenjie, Kang, Yuchen
The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.
SARChat-Bench-2M: A Multi-Task Vision-Language Benchmark for SAR Image Interpretation
Ma, Zhiming, Xiao, Xiayang, Dong, Sihao, Wang, Peidong, Wang, HaiPeng, Pan, Qingyun
As a powerful all-weather Earth observation tool, synthetic aperture radar (SAR) remote sensing enables critical military reconnaissance, maritime surveillance, and infrastructure monitoring. Although Vision language models (VLMs) have made remarkable progress in natural language processing and image understanding, their applications remain limited in professional domains due to insufficient domain expertise. This paper innovatively proposes the first large-scale multimodal dialogue dataset for SAR images, named SARChat-2M, which contains approximately 2 million high-quality image-text pairs, encompasses diverse scenarios with detailed target annotations. This dataset not only supports several key tasks such as visual understanding and object detection tasks, but also has unique innovative aspects: this study develop a visual-language dataset and benchmark for the SAR domain, enabling and evaluating VLMs' capabilities in SAR image interpretation, which provides a paradigmatic framework for constructing multimodal datasets across various remote sensing vertical domains. Through experiments on 16 mainstream VLMs, the effectiveness of the dataset has been fully verified. The project will be released at https://github.com/JimmyMa99/SARChat.
Streaming Speaker Change Detection and Gender Classification for Transducer-Based Multi-Talker Speech Translation
Wang, Peidong, Kanda, Naoyuki, Xue, Jian, Li, Jinyu, Wang, Xiaofei, Subramanian, Aswin Shanmugam, Chen, Junkun, Sivasankaran, Sunit, Xiao, Xiong, Zhao, Yong
Streaming multi-talker speech translation is a task that involves not only generating accurate and fluent translations with low latency but also recognizing when a speaker change occurs and what the speaker's gender is. Speaker change information can be used to create audio prompts for a zero-shot text-to-speech system, and gender can help to select speaker profiles in a conventional text-to-speech model. We propose to tackle streaming speaker change detection and gender classification by incorporating speaker embeddings into a transducer-based streaming end-to-end speech translation model. Our experiments demonstrate that the proposed methods can achieve high accuracy for both speaker change detection and gender classification.
Language Models as Continuous Self-Evolving Data Engineers
Wang, Peidong, Wang, Ming, Ma, Zhiming, Yang, Xiaocui, Feng, Shi, Wang, Daling, Zhang, Yifei
Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks, while the further evolvement is limited to the lack of high-quality training data. In addition, traditional training approaches rely too much on expert-labeled data, setting an upper limit on the performance of LLMs. To address this issue, we propose a novel paradigm that enables LLMs to train itself by autonomously generating, cleaning, reviewing, and annotating data with preference information, named LANCE. Our approach demonstrates that LLMs can serve as continuous self-evolving data engineers, significantly reducing the time and cost of the post-training data construction process. Through iterative fine-tuning on different variants of the Qwen2, we validate the effectiveness of LANCE across various tasks, showing that it can continuously improve model performance and maintain high-quality data generation. Across eight benchmark dimensions, LANCE resulted in an average score enhancement of 3.36 for Qwen2-7B and 2.70 for Qwen2-7B-Instruct. This training paradigm with autonomous data construction not only reduces the reliance on human experts or external models but also ensures that the data aligns with human values and preferences, paving the way for the development of future superintelligent systems that can exceed human capabilities.
Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation
Ghosh, Sreyan, Rasooli, Mohammad Sadegh, Levit, Michael, Wang, Peidong, Xue, Jian, Manocha, Dinesh, Li, Jinyu
Generative Error Correction (GEC) has emerged as a powerful post-processing method to enhance the performance of Automatic Speech Recognition (ASR) systems. However, we show that GEC models struggle to generalize beyond the specific types of errors encountered during training, limiting their ability to correct new, unseen errors at test time, particularly in out-of-domain (OOD) scenarios. This phenomenon amplifies with named entities (NEs), where, in addition to insufficient contextual information or knowledge about the NEs, novel NEs keep emerging. To address these issues, we propose DARAG (Data- and Retrieval-Augmented Generative Error Correction), a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios. We augment the GEC training dataset with synthetic data generated by prompting LLMs and text-to-speech models, thereby simulating additional errors from which the model can learn. For OOD scenarios, we simulate test-time errors from new domains similarly and in an unsupervised fashion. Additionally, to better handle named entities, we introduce retrieval-augmented correction by augmenting the input with entities retrieved from a database. Our approach is simple, scalable, and both domain- and language-agnostic. We experiment on multiple datasets and settings, showing that DARAG outperforms all our baselines, achieving 8\% -- 30\% relative WER improvements in ID and 10\% -- 33\% improvements in OOD settings.
Soft Language Identification for Language-Agnostic Many-to-One End-to-End Speech Translation
Wang, Peidong, Xue, Jian, Li, Jinyu, Chen, Junkun, Subramanian, Aswin Shanmugam
Language-agnostic many-to-one end-to-end speech translation models can convert audio signals from different source languages into text in a target language. These models do not need source language identification, which improves user experience. In some cases, the input language can be given or estimated. Our goal is to use this additional language information while preserving the quality of the other languages. We accomplish this by introducing a simple and effective linear input network. The linear input network is initialized as an identity matrix, which ensures that the model can perform as well as, or better than, the original model. Experimental results show that the proposed method can successfully enhance the specified language, while keeping the language-agnostic ability of the many-to-one ST models.
Variational Optimization for Quantum Problems using Deep Generative Networks
Zhang, Lingxia, Lin, Xiaodie, Wang, Peidong, Yang, Kaiyan, Zeng, Xiao, Wei, Zhaohui, Wang, Zizhu
Optimization is one of the keystones of modern science and engineering. Its applications in quantum technology and machine learning helped nurture variational quantum algorithms and generative AI respectively. We propose a general approach to design variational optimization algorithms based on generative models: the Variational Generative Optimization Network (VGON). To demonstrate its broad applicability, we apply VGON to three quantum tasks: finding the best state in an entanglement-detection protocol, finding the ground state of a 1D quantum spin model with variational quantum circuits, and generating degenerate ground states of many-body quantum Hamiltonians. For the first task, VGON greatly reduces the optimization time compared to stochastic gradient descent while generating nearly optimal quantum states. For the second task, VGON alleviates the barren plateau problem in variational quantum circuits. For the final task, VGON can identify the degenerate ground state spaces after a single stage of training and generate a variety of states therein.
DiariST: Streaming Speech Translation with Speaker Diarization
Yang, Mu, Kanda, Naoyuki, Wang, Xiaofei, Chen, Junkun, Wang, Peidong, Xue, Jian, Li, Jinyu, Yoshioka, Takuya
End-to-end speech translation (ST) for conversation recordings involves several under-explored challenges such as speaker diarization (SD) without accurate word time stamps and handling of overlapping speech in a streaming fashion. In this work, we propose DiariST, the first streaming ST and SD solution. It is built upon a neural transducer-based streaming ST system and integrates token-level serialized output training and t-vector, which were originally developed for multi-talker speech recognition. Due to the absence of evaluation benchmarks in this area, we develop a new evaluation dataset, DiariST-AliMeeting, by translating the reference Chinese transcriptions of the AliMeeting corpus into English. We also propose new metrics, called speaker-agnostic BLEU and speaker-attributed BLEU, to measure the ST quality while taking SD accuracy into account. Our system achieves a strong ST and SD capability compared to offline systems based on Whisper, while performing streaming inference for overlapping speech. To facilitate the research in this new direction, we release the evaluation data, the offline baseline systems, and the evaluation code.
StickerConv: Generating Multimodal Empathetic Responses from Scratch
Zhang, Yiqun, Kong, Fanheng, Wang, Peidong, Sun, Shuang, Wang, Lingshuai, Feng, Shi, Wang, Daling, Zhang, Yifei, Song, Kaisong
Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research. In this paper, we introduce the Agent for StickerConv (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, StickerConv, which includes 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios, specifically designs to augment the generation of empathetic responses in a multimodal context. To leverage the richness of this dataset, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation model, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS's effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems. Our project page is available at https://neu-datamining.github.io/StickerConv .
Leveraging Timestamp Information for Serialized Joint Streaming Recognition and Translation
Papi, Sara, Wang, Peidong, Chen, Junkun, Xue, Jian, Kanda, Naoyuki, Li, Jinyu, Gaur, Yashesh
The growing need for instant spoken language transcription and translation is driven by increased global communication and cross-lingual interactions. This has made offering translations in multiple languages essential for user applications. Traditional approaches to automatic speech recognition (ASR) and speech translation (ST) have often relied on separate systems, leading to inefficiencies in computational resources, and increased synchronization complexity in real time. In this paper, we propose a streaming Transformer-Transducer (T-T) model able to jointly produce many-to-one and one-to-many transcription and translation using a single decoder. We introduce a novel method for joint token-level serialized output training based on timestamp information to effectively produce ASR and ST outputs in the streaming setting. Experiments on {it,es,de}->en prove the effectiveness of our approach, enabling the generation of one-to-many joint outputs with a single decoder for the first time.