Wang, Pei
MTU-Bench: A Multi-granularity Tool-Use Benchmark for Large Language Models
Wang, Pei, Wu, Yanan, Wang, Zekun, Liu, Jiaheng, Song, Xiaoshuai, Peng, Zhongyuan, Deng, Ken, Zhang, Chenchen, Wang, Jiakai, Peng, Junran, Zhang, Ge, Guo, Hangyu, Zhang, Zhaoxiang, Su, Wenbo, Zheng, Bo
Large Language Models (LLMs) have displayed massive improvements in reasoning and decision-making skills and can hold natural conversations with users. Recently, many tool-use benchmark datasets have been proposed. However, existing datasets have the following limitations: (1). Insufficient evaluation scenarios (e.g., only cover limited tool-use scenes). (2). Extensive evaluation costs (e.g., GPT API costs). To address these limitations, in this work, we propose a multi-granularity tool-use benchmark for large language models called MTU-Bench. For the "multi-granularity" property, our MTU-Bench covers five tool usage scenes (i.e., single-turn and single-tool, single-turn and multiple-tool, multiple-turn and single-tool, multiple-turn and multiple-tool, and out-of-distribution tasks). Besides, all evaluation metrics of our MTU-Bench are based on the prediction results and the ground truth without using any GPT or human evaluation metrics. Moreover, our MTU-Bench is collected by transforming existing high-quality datasets to simulate real-world tool usage scenarios, and we also propose an instruction dataset called MTU-Instruct data to enhance the tool-use abilities of existing LLMs. Comprehensive experimental results demonstrate the effectiveness of our MTU-Bench. Code and data will be released at https: //github.com/MTU-Bench-Team/MTU-Bench.git.
"Pass the butter": A study on desktop-classic multitasking robotic arm based on advanced YOLOv7 and BERT
Que, Haohua, Pan, Wenbin, Xu, Jie, Luo, Hao, Wang, Pei, Zhang, Li
In recent years, various intelligent autonomous robots have begun to appear in daily life and production. Desktop-level robots are characterized by their flexible deployment, rapid response, and suitability for light workload environments. In order to meet the current societal demand for service robot technology, this study proposes using a miniaturized desktop-level robot (by ROS) as a carrier, locally deploying a natural language model (NLP-BERT), and integrating visual recognition (CV-YOLO) and speech recognition technology (ASR-Whisper) as inputs to achieve autonomous decision-making and rational action by the desktop robot. Three comprehensive experiments were designed to validate the robotic arm, and the results demonstrate excellent performance using this approach across all three experiments. In Task 1, the execution rates for speech recognition and action performance were 92.6% and 84.3%, respectively. In Task 2, the highest execution rates under the given conditions reached 92.1% and 84.6%, while in Task 3, the highest execution rates were 95.2% and 80.8%, respectively. Therefore, it can be concluded that the proposed solution integrating ASR, NLP, and other technologies on edge devices is feasible and provides a technical and engineering foundation for realizing multimodal desktop-level robots.
IA-GCN: Interactive Graph Convolutional Network for Recommendation
Zhang, Yinan, Wang, Pei, Liu, Congcong, Zhao, Xiwei, Qi, Hao, He, Jie, Jin, Junsheng, Peng, Changping, Lin, Zhangang, Shao, Jingping
Recently, Graph Convolutional Network (GCN) has become a novel state-of-art for Collaborative Filtering (CF) based Recommender Systems (RS). It is a common practice to learn informative user and item representations by performing embedding propagation on a user-item bipartite graph, and then provide the users with personalized item suggestions based on the representations. Despite effectiveness, existing algorithms neglect precious interactive features between user-item pairs in the embedding process. When predicting a user's preference for different items, they still aggregate the user tree in the same way, without emphasizing target-related information in the user neighborhood. Such a uniform aggregation scheme easily leads to suboptimal user and item representations, limiting the model expressiveness to some extent. In this work, we address this problem by building bilateral interactive guidance between each user-item pair and proposing a new model named IA-GCN (short for InterActive GCN). Specifically, when learning the user representation from its neighborhood, we assign higher attention weights to those neighbors similar to the target item. Correspondingly, when learning the item representation, we pay more attention to those neighbors resembling the target user. This leads to interactive and interpretable features, effectively distilling target-specific information through each graph convolutional operation. Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion. Extensive experiments on three benchmark datasets demonstrate the effectiveness and robustness of IA-GCN.
Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent Detection
Wang, Pei, He, Keqing, Wang, Yejie, Song, Xiaoshuai, Mou, Yutao, Wang, Jingang, Xian, Yunsen, Cai, Xunliang, Xu, Weiran
Out-of-domain (OOD) intent detection aims to examine whether the user's query falls outside the predefined domain of the system, which is crucial for the proper functioning of task-oriented dialogue (TOD) systems. Previous methods address it by fine-tuning discriminative models. Recently, some studies have been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, but it is still unclear for their ability on OOD detection task.This paper conducts a comprehensive evaluation of LLMs under various experimental settings, and then outline the strengths and weaknesses of LLMs. We find that LLMs exhibit strong zero-shot and few-shot capabilities, but is still at a disadvantage compared to models fine-tuned with full resource. More deeply, through a series of additional analysis experiments, we discuss and summarize the challenges faced by LLMs and provide guidance for future work including injecting domain knowledge, strengthening knowledge transfer from IND(In-domain) to OOD, and understanding long instructions.
DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning
Wang, Yejie, He, Keqing, Dong, Guanting, Wang, Pei, Zeng, Weihao, Diao, Muxi, Mou, Yutao, Zhang, Mengdi, Wang, Jingang, Cai, Xunliang, Xu, Weiran
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Several instruction tuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model (DolphCoder) with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with distinct reasoning paths increases the code capability of LLMs. (2) Improving one's ability to evaluate the correctness of code solutions also enhances their ability to create it.
You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement
Feng, Yixu, Zhang, Cheng, Wang, Pei, Wu, Peng, Yan, Qingsen, Zhang, Yanning
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images. Most existing methods learn the mapping function between low/normal-light images by Deep Neural Networks (DNNs) on sRGB and HSV color space. Nevertheless, enhancement involves amplifying image signals, and applying these color spaces to low-light images with a low signal-to-noise ratio can introduce sensitivity and instability into the enhancement process. Consequently, this results in the presence of color artifacts and brightness artifacts in the enhanced images. To alleviate this problem, we propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI). It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters. Further, we design a novel Color and Intensity Decoupling Network (CIDNet) with two branches dedicated to processing the decoupled image brightness and color in the HVI space. Within CIDNet, we introduce the Lightweight Cross-Attention (LCA) module to facilitate interaction between image structure and content information in both branches, while also suppressing noise in low-light images. Finally, we conducted 22 quantitative and qualitative experiments to show that the proposed CIDNet outperforms the state-of-the-art methods on 11 datasets. The code will be available at https://github.com/Fediory/HVI-CIDNet.
Continual Generalized Intent Discovery: Marching Towards Dynamic and Open-world Intent Recognition
Song, Xiaoshuai, Mou, Yutao, He, Keqing, Qiu, Yueyan, Wang, Pei, Xu, Weiran
In a practical dialogue system, users may input out-of-domain (OOD) queries. The Generalized Intent Discovery (GID) task aims to discover OOD intents from OOD queries and extend them to the in-domain (IND) classifier. However, GID only considers one stage of OOD learning, and needs to utilize the data in all previous stages for joint training, which limits its wide application in reality. In this paper, we introduce a new task, Continual Generalized Intent Discovery (CGID), which aims to continuously and automatically discover OOD intents from dynamic OOD data streams and then incrementally add them to the classifier with almost no previous data, thus moving towards dynamic intent recognition in an open world. Next, we propose a method called Prototype-guided Learning with Replay and Distillation (PLRD) for CGID, which bootstraps new intent discovery through class prototypes and balances new and old intents through data replay and feature distillation. Finally, we conduct detailed experiments and analysis to verify the effectiveness of PLRD and understand the key challenges of CGID for future research.
Large Language Models Meet Open-World Intent Discovery and Recognition: An Evaluation of ChatGPT
Song, Xiaoshuai, He, Keqing, Wang, Pei, Dong, Guanting, Mou, Yutao, Wang, Jingang, Xian, Yunsen, Cai, Xunliang, Xu, Weiran
The tasks of out-of-domain (OOD) intent discovery and generalized intent discovery (GID) aim to extend a closed intent classifier to open-world intent sets, which is crucial to task-oriented dialogue (TOD) systems. Previous methods address them by fine-tuning discriminative models. Recently, although some studies have been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, it is still unclear for the ability of ChatGPT to discover and incrementally extent OOD intents. In this paper, we comprehensively evaluate ChatGPT on OOD intent discovery and GID, and then outline the strengths and weaknesses of ChatGPT. Overall, ChatGPT exhibits consistent advantages under zero-shot settings, but is still at a disadvantage compared to fine-tuned models. More deeply, through a series of analytical experiments, we summarize and discuss the challenges faced by LLMs including clustering, domain-specific understanding, and cross-domain in-context learning scenarios. Finally, we provide empirical guidance for future directions to address these challenges.
Ethosight: A Reasoning-Guided Iterative Learning System for Nuanced Perception based on Joint-Embedding & Contextual Label Affinity
Latapie, Hugo, Yu, Shan, Hammer, Patrick, Thorisson, Kristinn R., Petrosyan, Vahagn, Kynoch, Brandon, Khare, Alind, Behnam, Payman, Tumanov, Alexey, Saxena, Aksheit, Aralikatti, Anish, Chen, Hanning, Imani, Mohsen, Archbold, Mike, Li, Tangrui, Wang, Pei, Hart, Justin
Traditional computer vision models often necessitate extensive data acquisition, annotation, and validation. These models frequently struggle in real-world applications, resulting in high false positive and negative rates, and exhibit poor adaptability to new scenarios, often requiring costly retraining. To address these issues, we present Ethosight, a flexible and adaptable zero-shot video analytics system. Ethosight begins from a clean slate based on user-defined video analytics, specified through natural language or keywords, and leverages joint embedding models and reasoning mechanisms informed by ontologies such as WordNet and ConceptNet. Ethosight operates effectively on low-cost edge devices and supports enhanced runtime adaptation, thereby offering a new approach to continuous learning without catastrophic forgetting. We provide empirical validation of Ethosight's promising effectiveness across diverse and complex use cases, while highlighting areas for further improvement. A significant contribution of this work is the release of all source code and datasets to enable full reproducibility and to foster further innovation in both the research and commercial domains.
Confidence Ranking for CTR Prediction
Zhu, Jian, Liu, Congcong, Wang, Pei, Zhao, Xiwei, Lin, Zhangang, Shao, Jingping
Model evolution and constant availability of data are two common phenomena in large-scale real-world machine learning applications, e.g. ads and recommendation systems. To adapt, the real-world system typically retrain with all available data and online learn with recently available data to update the models periodically with the goal of better serving performance. In this paper, we propose a novel framework, named Confidence Ranking, which designs the optimization objective as a ranking function with two different models. Our confidence ranking loss allows direct optimization of the logits output for different convex surrogate functions of metrics, e.g. AUC and Accuracy depending on the target task and dataset. Armed with our proposed methods, our experiments show that the introduction of confidence ranking loss can outperform all baselines on the CTR prediction tasks of public and industrial datasets. This framework has been deployed in the advertisement system of JD.com to serve the main traffic in the fine-rank stage.