Goto

Collaborating Authors

 Wang, Mingxuan


BigVideo: A Large-scale Video Subtitle Translation Dataset for Multimodal Machine Translation

arXiv.org Artificial Intelligence

The text inputs are often context to understand the world. From the simple and sufficient for translation tasks (Wu perspective of NMT, it is also much needed to et al., 2021). Take the widely used Multi30K as make use of such information to approach humanlevel an example. Multi30K consists of only 30K image translation abilities. To facilitate Multimodal captions, while typical text translation systems are Machine Translation (MMT) research, a number often trained with several million sentence pairs. of datasets have been proposed including imageguided We argue that studying the effects of visual contexts translation datasets (Elliott et al., 2016; in machine translation requires a large-scale Gella et al., 2019; Wang et al., 2022) and videoguided and diverse data set for training and a real-world translation datasets (Sanabria et al., 2018; and complex benchmark for testing.


Recent Advances in Direct Speech-to-text Translation

arXiv.org Artificial Intelligence

Recently, speech-to-text translation has attracted more and more attention and many studies have emerged rapidly. In this paper, we present a comprehensive survey on direct speech translation aiming to summarize the current state-of-the-art techniques. First, we categorize the existing research work into three directions based on the main challenges -- modeling burden, data scarcity, and application issues. To tackle the problem of modeling burden, two main structures have been proposed, encoder-decoder framework (Transformer and the variants) and multitask frameworks. For the challenge of data scarcity, recent work resorts to many sophisticated techniques, such as data augmentation, pre-training, knowledge distillation, and multilingual modeling. We analyze and summarize the application issues, which include real-time, segmentation, named entity, gender bias, and code-switching. Finally, we discuss some promising directions for future work.


MOSPC: MOS Prediction Based on Pairwise Comparison

arXiv.org Artificial Intelligence

As a subjective metric to evaluate the quality of synthesized speech, Mean opinion score~(MOS) usually requires multiple annotators to score the same speech. Such an annotation approach requires a lot of manpower and is also time-consuming. MOS prediction model for automatic evaluation can significantly reduce labor cost. In previous works, it is difficult to accurately rank the quality of speech when the MOS scores are close. However, in practical applications, it is more important to correctly rank the quality of synthesis systems or sentences than simply predicting MOS scores. Meanwhile, as each annotator scores multiple audios during annotation, the score is probably a relative value based on the first or the first few speech scores given by the annotator. Motivated by the above two points, we propose a general framework for MOS prediction based on pair comparison (MOSPC), and we utilize C-Mixup algorithm to enhance the generalization performance of MOSPC. The experiments on BVCC and VCC2018 show that our framework outperforms the baselines on most of the correlation coefficient metrics, especially on the metric KTAU related to quality ranking. And our framework also surpasses the strong baseline in ranking accuracy on each fine-grained segment. These results indicate that our framework contributes to improving the ranking accuracy of speech quality.


Understanding Parameter Sharing in Transformers

arXiv.org Artificial Intelligence

Parameter sharing has proven to be a parameter-efficient approach. Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth. In this paper, we study why this approach works from two perspectives. First, increasing model depth makes the model more complex, and we hypothesize that the reason is related to model complexity (referring to FLOPs). Secondly, since each shared parameter will participate in the network computation several times in forward propagation, its corresponding gradient will have a different range of values from the original model, which will affect the model convergence. Based on this, we hypothesize that training convergence may also be one of the reasons. Through further analysis, we show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity. Inspired by this, we tune the training hyperparameters related to model convergence in a targeted manner. Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.


PolyVoice: Language Models for Speech to Speech Translation

arXiv.org Artificial Intelligence

We propose PolyVoice, a language model-based framework for speech-to-speech translation (S2ST) system. Our framework consists of two language models: a translation language model and a speech synthesis language model. We use discretized speech units, which are generated in a fully unsupervised way, and thus our framework can be used for unwritten languages. For the speech synthesis part, we adopt the existing VALL-E X approach and build a unit-based audio language model. This grants our framework the ability to preserve the voice characteristics and the speaking style of the original speech. We examine our system on Chinese $\rightarrow$ English and English $\rightarrow$ Spanish pairs. Experimental results show that our system can generate speech with high translation quality and audio quality. Speech samples are available at https://speechtranslation.github.io/polyvoice.


MobileNMT: Enabling Translation in 15MB and 30ms

arXiv.org Artificial Intelligence

Deploying NMT models on mobile devices is essential for privacy, low latency, and offline scenarios. For high model capacity, NMT models are rather large. Running these models on devices is challenging with limited storage, memory, computation, and power consumption. Existing work either only focuses on a single metric such as FLOPs or general engine which is not good at auto-regressive decoding. In this paper, we present MobileNMT, a system that can translate in 15MB and 30ms on devices. We propose a series of principles for model compression when combined with quantization. Further, we implement an engine that is friendly to INT8 and decoding. With the co-design of model and engine, compared with the existing system, we speed up 47.0x and save 99.5% of memory with only 11.6% loss of BLEU. The code is publicly available at https://github.com/zjersey/Lightseq-ARM.


GigaST: A 10,000-hour Pseudo Speech Translation Corpus

arXiv.org Artificial Intelligence

This paper introduces GigaST, a large-scale pseudo speech translation (ST) corpus. We create the corpus by translating the text in GigaSpeech, an English ASR corpus, into German and Chinese. The training set is translated by a strong machine translation system and the test set is translated by human. ST models trained with an addition of our corpus obtain new state-of-the-art results on the MuST-C English-German benchmark test set. We provide a detailed description of the translation process and verify its quality. We make the translated text data public and hope to facilitate research in speech translation. Additionally, we also release the training scripts on NeurST to make it easy to replicate our systems. GigaST dataset is available at https://st-benchmark.github.io/resources/GigaST.


Controlling Styles in Neural Machine Translation with Activation Prompt

arXiv.org Artificial Intelligence

Controlling styles in neural machine translation (NMT) has attracted wide attention, as it is crucial for enhancing user experience. Earlier studies on this topic typically concentrate on regulating the level of formality and achieve some progress in this area. However, they still encounter two major challenges. The first is the difficulty in style evaluation. The style comprises various aspects such as lexis, syntax, and others that provide abundant information. Nevertheless, only formality has been thoroughly investigated. The second challenge involves excessive dependence on incremental adjustments, particularly when new styles are necessary. To address both challenges, this paper presents a new benchmark and approach. A multiway stylized machine translation (MSMT) benchmark is introduced, incorporating diverse categories of styles across four linguistic domains. Then, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which does not require extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance.


CTC-based Non-autoregressive Speech Translation

arXiv.org Artificial Intelligence

Combining end-to-end speech translation (ST) and non-autoregressive (NAR) generation is promising in language and speech processing for their advantages of less error propagation and low latency. In this paper, we investigate the potential of connectionist temporal classification (CTC) for non-autoregressive speech translation (NAST). In particular, we develop a model consisting of two encoders that are guided by CTC to predict the source and target texts, respectively. Introducing CTC into NAST on both language sides has obvious challenges: 1) the conditional independent generation somewhat breaks the interdependency among tokens, and 2) the monotonic alignment assumption in standard CTC does not hold in translation tasks. In response, we develop a prediction-aware encoding approach and a cross-layer attention approach to address these issues. We also use curriculum learning to improve convergence of training. Experiments on the MuST-C ST benchmarks show that our NAST model achieves an average BLEU score of 29.5 with a speed-up of 5.67$\times$, which is comparable to the autoregressive counterpart and even outperforms the previous best result of 0.9 BLEU points.


DUB: Discrete Unit Back-translation for Speech Translation

arXiv.org Artificial Intelligence

How can speech-to-text translation (ST) perform as well as machine translation (MT)? The key point is to bridge the modality gap between speech and text so that useful MT techniques can be applied to ST. Recently, the approach of representing speech with unsupervised discrete units yields a new way to ease the modality problem. This motivates us to propose Discrete Unit Back-translation (DUB) to answer two questions: (1) Is it better to represent speech with discrete units than with continuous features in direct ST? (2) How much benefit can useful MT techniques bring to ST? With DUB, the back-translation technique can successfully be applied on direct ST and obtains an average boost of 5.5 BLEU on MuST-C En-De/Fr/Es. In the low-resource language scenario, our method achieves comparable performance to existing methods that rely on large-scale external data. Code and models are available at https://github.com/0nutation/DUB.