Wang, Mingxuan
DAPO: An Open-Source LLM Reinforcement Learning System at Scale
Yu, Qiying, Zhang, Zheng, Zhu, Ruofei, Yuan, Yufeng, Zuo, Xiaochen, Yue, Yu, Fan, Tiantian, Liu, Gaohong, Liu, Lingjun, Liu, Xin, Lin, Haibin, Lin, Zhiqi, Ma, Bole, Sheng, Guangming, Tong, Yuxuan, Zhang, Chi, Zhang, Mofan, Zhang, Wang, Zhu, Hang, Zhu, Jinhua, Chen, Jiaze, Chen, Jiangjie, Wang, Chengyi, Yu, Hongli, Dai, Weinan, Song, Yuxuan, Wei, Xiangpeng, Zhou, Hao, Liu, Jingjing, Ma, Wei-Ying, Zhang, Ya-Qin, Yan, Lin, Qiao, Mu, Wu, Yonghui, Wang, Mingxuan
Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the $\textbf{D}$ecoupled Clip and $\textbf{D}$ynamic s$\textbf{A}$mpling $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{DAPO}$) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.
OpenAI o1 System Card
OpenAI, null, :, null, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiรฑonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody Y., Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
BlenderLLM: Training Large Language Models for Computer-Aided Design with Self-improvement
Du, Yuhao, Chen, Shunian, Zan, Wenbo, Li, Peizhao, Wang, Mingxuan, Song, Dingjie, Li, Bo, Hu, Yan, Wang, Benyou
The application of Large Language Models (LLMs) in Computer-Aided Design (CAD) remains an underexplored area, despite their remarkable advancements in other domains. In this paper, we present BlenderLLM, a novel framework for training LLMs specifically for CAD tasks leveraging a self-improvement methodology. To support this, we developed a bespoke training dataset, BlendNet, and introduced a comprehensive evaluation suite, CADBench. Our results reveal that existing models demonstrate significant limitations in generating accurate CAD scripts. However, through minimal instruction-based fine-tuning and iterative self-improvement, BlenderLLM significantly surpasses these models in both functionality and accuracy of CAD script generation. This research establishes a strong foundation for the application of LLMs in CAD while demonstrating the transformative potential of self-improving models in advancing CAD automation. We encourage further exploration and adoption of these methodologies to drive innovation in the field. The dataset, model, benchmark, and source code are publicly available at https://github.com/FreedomIntelligence/BlenderLLM
Speech Translation with Large Language Models: An Industrial Practice
Huang, Zhichao, Ye, Rong, Ko, Tom, Dong, Qianqian, Cheng, Shanbo, Wang, Mingxuan, Li, Hang
Given the great success of large language models (LLMs) across various tasks, in this paper, we introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained LLM. By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations, even from long audio inputs. Furthermore, our findings indicate that the implementation of Chain-of-Thought (CoT) prompting can yield advantages in the context of LLM-ST.
Diffusion Glancing Transformer for Parallel Sequence to Sequence Learning
Qian, Lihua, Wang, Mingxuan, Liu, Yang, Zhou, Hao
Previously, non-autoregressive models were widely perceived as being superior in generation efficiency but inferior in generation quality due to the difficulties of modeling multiple target modalities. To enhance the multi-modality modeling ability, we propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling. The modality diffusion process is a discrete process that interpolates the multi-modal distribution along the decoding steps, and the residual glancing sampling approach guides the model to continuously learn the remaining modalities across the layers. Experimental results on various machine translation and text generation benchmarks demonstrate that DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
Only 5\% Attention Is All You Need: Efficient Long-range Document-level Neural Machine Translation
Liu, Zihan, Sun, Zewei, Cheng, Shanbo, Huang, Shujian, Wang, Mingxuan
Document-level Neural Machine Translation (DocNMT) has been proven crucial for handling discourse phenomena by introducing document-level context information. One of the most important directions is to input the whole document directly to the standard Transformer model. In this case, efficiency becomes a critical concern due to the quadratic complexity of the attention module. Existing studies either focus on the encoder part, which cannot be deployed on sequence-to-sequence generation tasks, e.g., Machine Translation (MT), or suffer from a significant performance drop. In this work, we keep the translation performance while gaining 20\% speed up by introducing extra selection layer based on lightweight attention that selects a small portion of tokens to be attended. It takes advantage of the original attention to ensure performance and dimension reduction to accelerate inference. Experimental results show that our method could achieve up to 95\% sparsity (only 5\% tokens attended) approximately, and save 93\% computation cost on the attention module compared with the original Transformer, while maintaining the performance.
Beyond Triplet: Leveraging the Most Data for Multimodal Machine Translation
Zhu, Yaoming, Sun, Zewei, Cheng, Shanbo, Huang, Luyang, Wu, Liwei, Wang, Mingxuan
Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets. These studies face two challenges. First, they can only utilize triple data (bilingual texts with images), which is scarce; second, current benchmarks are relatively restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and new datasets for MMT. First, we propose a framework 2/3-Triplet with two new approaches to enhance MMT by utilizing large-scale non-triple data: monolingual image-text data and parallel text-only data. Second, we construct an English-Chinese {e}-commercial {m}ulti{m}odal {t}ranslation dataset (including training and testing), named EMMT, where its test set is carefully selected as some words are ambiguous and shall be translated mistakenly without the help of images. Experiments show that our method is more suitable for real-world scenarios and can significantly improve translation performance by using more non-triple data. In addition, our model also rivals various SOTA models in conventional multimodal translation benchmarks.
Leveraging per Image-Token Consistency for Vision-Language Pre-training
Gou, Yunhao, Ko, Tom, Yang, Hansi, Kwok, James, Zhang, Yu, Wang, Mingxuan
Most existing vision-language pre-training (VLP) approaches adopt cross-modal masked language modeling (CMLM) to learn vision-language associations. However, we find that CMLM is insufficient for this purpose according to our observations: (1) Modality bias: a considerable amount of masked tokens in CMLM can be recovered with only the language information, ignoring the visual inputs. (2) Under-utilization of the unmasked tokens: CMLM primarily focuses on the masked token but it cannot simultaneously leverage other tokens to learn vision-language associations. To handle those limitations, we propose EPIC (lEveraging Per Image-Token Consistency for vision-language pre-training). In EPIC, for each image-sentence pair, we mask tokens that are salient to the image (i.e., Saliency-based Masking Strategy) and replace them with alternatives sampled from a language model (i.e., Inconsistent Token Generation Procedure), and then the model is required to determine for each token in the sentence whether it is consistent with the image (i.e., Image-Token Consistency Task). The proposed EPIC method is easily combined with pre-training methods. Extensive experiments show that the combination of the EPIC method and state-of-the-art pre-training approaches, including ViLT, ALBEF, METER, and X-VLM, leads to significant improvements on downstream tasks. The code is released at https://github.com/gyhdog99/epic.
BLEURT Has Universal Translations: An Analysis of Automatic Metrics by Minimum Risk Training
Yan, Yiming, Wang, Tao, Zhao, Chengqi, Huang, Shujian, Chen, Jiajun, Wang, Mingxuan
Automatic metrics play a crucial role in machine translation. Despite the widespread use of n-gram-based metrics, there has been a recent surge in the development of pre-trained model-based metrics that focus on measuring sentence semantics. However, these neural metrics, while achieving higher correlations with human evaluations, are often considered to be black boxes with potential biases that are difficult to detect. In this study, we systematically analyze and compare various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems. Through Minimum Risk Training (MRT), we find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore. In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm. By incorporating token-level constraints, we enhance the robustness of evaluation metrics, which in turn leads to an improvement in the performance of machine translation systems. Codes are available at \url{https://github.com/powerpuffpomelo/fairseq_mrt}.
SESCORE2: Learning Text Generation Evaluation via Synthesizing Realistic Mistakes
Xu, Wenda, Qian, Xian, Wang, Mingxuan, Li, Lei, Wang, William Yang
Is it possible to train a general metric for evaluating text generation quality without human annotated ratings? Existing learned metrics either perform unsatisfactorily across text generation tasks or require human ratings for training on specific tasks. In this paper, we propose SESCORE2, a self-supervised approach for training a model-based metric for text generation evaluation. The key concept is to synthesize realistic model mistakes by perturbing sentences retrieved from a corpus. The primary advantage of the SESCORE2 is its ease of extension to many other languages while providing reliable severity estimation. We evaluate SESCORE2 and previous methods on four text generation tasks across three languages. SESCORE2 outperforms unsupervised metric PRISM on four text generation evaluation benchmarks, with a Kendall improvement of 0.078. Surprisingly, SESCORE2 even outperforms the supervised BLEURT and COMET on multiple text generation tasks. The code and data are available at https://github.com/xu1998hz/SEScore2.