Goto

Collaborating Authors

 Wang, Min


Machine Learning Aided Modeling of Granular Materials: A Review

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a buzz word since Google's AlphaGo beat a world champion in 2017. In the past five years, machine learning as a subset of the broader category of AI has obtained considerable attention in the research community of granular materials. This work offers a detailed review of the recent advances in machine learning-aided studies of granular materials from the particle-particle interaction at the grain level to the macroscopic simulations of granular flow. This work will start with the application of machine learning in the microscopic particle-particle interaction and associated contact models. Then, different neural networks for learning the constitutive behaviour of granular materials will be reviewed and compared. Finally, the macroscopic simulations of practical engineering or boundary value problems based on the combination of neural networks and numerical methods are discussed. We hope readers will have a clear idea of the development of machine learning-aided modelling of granular materials via this comprehensive review work.


Autoencoder-assisted Feature Ensemble Net for Incipient Faults

arXiv.org Artificial Intelligence

Deep learning has shown the great power in the field of fault detection. However, for incipient faults with tiny amplitude, the detection performance of the current deep learning networks (DLNs) is not satisfactory. Even if prior information about the faults is utilized, DLNs can't successfully detect faults 3, 9 and 15 in Tennessee Eastman process (TEP). These faults are notoriously difficult to detect, lacking effective detection technologies in the field of fault detection. In this work, we propose Autoencoder-assisted Feature Ensemble Net (AE-FENet): a deep feature ensemble framework that uses the unsupervised autoencoder to conduct the feature transformation. Compared with the principle component analysis (PCA) technique adopted in the original Feature Ensemble Net (FENet), autoencoder can mine more exact features on incipient faults, which results in the better detection performance of AE-FENet. With same kinds of basic detectors, AE-FENet achieves a state-of-the-art average accuracy over 96% on faults 3, 9 and 15 in TEP, which represents a significant enhancement in performance compared to other methods. Plenty of experiments have been done to extend our framework, proving that DLNs can be utilized efficiently within this architecture.


Token-Efficient Leverage Learning in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have excelled in various tasks but perform better in high-resource scenarios, which presents challenges in low-resource scenarios. Data scarcity and the inherent difficulty of adapting LLMs to specific tasks compound the challenge. To address the twin hurdles, we introduce \textbf{Leverage Learning}. We present a streamlined implement of this methodology called Token-Efficient Leverage Learning (TELL). TELL showcases the potential of Leverage Learning, demonstrating effectiveness across various LLMs and low-resource tasks, ranging from $10^4$ to $10^6$ tokens. It reduces task data requirements by up to nearly an order of magnitude compared to conventional Supervised Fine-Tuning (SFT) while delivering competitive performance. With the same amount of task data, TELL leads in improving task performance compared to SFT. We discuss the mechanism of Leverage Learning, suggesting it aligns with quantization hypothesis and explore its promising potential through empirical testing.


Instance-aware Exploration-Verification-Exploitation for Instance ImageGoal Navigation

arXiv.org Artificial Intelligence

As a new embodied vision task, Instance ImageGoal Navigation (IIN) aims to navigate to a specified object depicted by a goal image in an unexplored environment. The main challenge of this task lies in identifying the target object from different viewpoints while rejecting similar distractors. Existing ImageGoal Navigation methods usually adopt the simple Exploration-Exploitation framework and ignore the identification of specific instance during navigation. In this work, we propose to imitate the human behaviour of ``getting closer to confirm" when distinguishing objects from a distance. Specifically, we design a new modular navigation framework named Instance-aware Exploration-Verification-Exploitation (IEVE) for instance-level image goal navigation. Our method allows for active switching among the exploration, verification, and exploitation actions, thereby facilitating the agent in making reasonable decisions under different situations. On the challenging HabitatMatterport 3D semantic (HM3D-SEM) dataset, our method surpasses previous state-of-the-art work, with a classical segmentation model (0.684 vs. 0.561 success) or a robust model (0.702 vs. 0.561 success)


Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate Folding Landscape and Protein Structure Prediction

arXiv.org Artificial Intelligence

Data-driven predictive methods which can efficiently and accurately transform protein sequences into biologically active structures are highly valuable for scientific research and medical development. Determining accurate folding landscape using co-evolutionary information is fundamental to the success of modern protein structure prediction methods. As the state of the art, AlphaFold2 has dramatically raised the accuracy without performing explicit co-evolutionary analysis. Nevertheless, its performance still shows strong dependence on available sequence homologs. Based on the interrogation on the cause of such dependence, we presented EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets. By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in low-data regime and even achieve encouraging performance with single-sequence predictions. Being able to make accurate predictions with few-shot MSA not only generalizes AlphaFold2 better for orphan sequences, but also democratizes its use for high-throughput applications. Besides, EvoGen combined with AlphaFold2 yields a probabilistic structure generation method which could explore alternative conformations of protein sequences, and the task-aware differentiable algorithm for sequence generation will benefit other related tasks including protein design.


Automatic Deduction Path Learning via Reinforcement Learning with Environmental Correction

arXiv.org Artificial Intelligence

Automatic bill payment is an important part of business operations in fintech companies. The practice of deduction was mainly based on the total amount or heuristic search by dividing the bill into smaller parts to deduct as much as possible. This article proposes an end-to-end approach of automatically learning the optimal deduction paths (deduction amount in order), which reduces the cost of manual path design and maximizes the amount of successful deduction. Specifically, in view of the large search space of the paths and the extreme sparsity of historical successful deduction records, we propose a deep hierarchical reinforcement learning approach which abstracts the action into a two-level hierarchical space: an upper agent that determines the number of steps of deductions each day and a lower agent that decides the amount of deduction at each step. In such a way, the action space is structured via prior knowledge and the exploration space is reduced. Moreover, the inherited information incompleteness of the business makes the environment just partially observable. To be precise, the deducted amounts indicate merely the lower bounds of the available account balance. To this end, we formulate the problem as a partially observable Markov decision problem (POMDP) and employ an environment correction algorithm based on the characteristics of the business. In the world's largest electronic payment business, we have verified the effectiveness of this scheme offline and deployed it online to serve millions of users.


Rethinking Efficient Lane Detection via Curve Modeling

arXiv.org Artificial Intelligence

This paper presents a novel parametric curve-based method for lane detection in RGB images. Unlike state-of-the-art segmentation-based and point detection-based methods that typically require heuristics to either decode predictions or formulate a large sum of anchors, the curve-based methods can learn holistic lane representations naturally. To handle the optimization difficulties of existing polynomial curve methods, we propose to exploit the parametric B\'ezier curve due to its ease of computation, stability, and high freedom degrees of transformations. In addition, we propose the deformable convolution-based feature flip fusion, for exploiting the symmetry properties of lanes in driving scenes. The proposed method achieves a new state-of-the-art performance on the popular LLAMAS benchmark. It also achieves favorable accuracy on the TuSimple and CULane datasets, while retaining both low latency (> 150 FPS) and small model size (< 10M). Our method can serve as a new baseline, to shed the light on the parametric curves modeling for lane detection. Codes of our model and PytorchAutoDrive: a unified framework for self-driving perception, are available at: https://github.com/voldemortX/pytorch-auto-drive .


An Order-Invariant and Interpretable Hierarchical Dilated Convolution Neural Network for Chemical Fault Detection and Diagnosis

arXiv.org Artificial Intelligence

Fault detection and diagnosis is significant for reducing maintenance costs and improving health and safety in chemical processes. Convolution neural network (CNN) is a popular deep learning algorithm with many successful applications in chemical fault detection and diagnosis tasks. However, convolution layers in CNN are very sensitive to the order of features, which can lead to instability in the processing of tabular data. Optimal order of features result in better performance of CNN models but it is expensive to seek such optimal order. In addition, because of the encapsulation mechanism of feature extraction, most CNN models are opaque and have poor interpretability, thus failing to identify root-cause features without human supervision. These difficulties inevitably limit the performance and credibility of CNN methods. In this paper, we propose an order-invariant and interpretable hierarchical dilated convolution neural network (HDLCNN), which is composed by feature clustering, dilated convolution and the shapley additive explanations (SHAP) method. The novelty of HDLCNN lies in its capability of processing tabular data with features of arbitrary order without seeking the optimal order, due to the ability to agglomerate correlated features of feature clustering and the large receptive field of dilated convolution. Then, the proposed method provides interpretability by including the SHAP values to quantify feature contribution. Therefore, the root-cause features can be identified as the features with the highest contribution. Computational experiments are conducted on the Tennessee Eastman chemical process benchmark dataset. Compared with the other methods, the proposed HDLCNN-SHAP method achieves better performance on processing tabular data with features of arbitrary order, detecting faults, and identifying the root-cause features.


Diverse facial inpainting guided by exemplars

arXiv.org Artificial Intelligence

Facial image inpainting is a task of filling visually realistic and semantically meaningful contents for missing or masked pixels in a face image. Although existing methods have made significant progress in achieving high visual quality, the controllable diversity of facial image inpainting remains an open problem in this field. This paper introduces EXE-GAN, a novel diverse and interactive facial inpainting framework, which can not only preserve the high-quality visual effect of the whole image but also complete the face image with exemplar-like facial attributes. The proposed facial inpainting is achieved based on generative adversarial networks by leveraging the global style of input image, the stochastic style, and the exemplar style of exemplar image. A novel attribute similarity metric is introduced to encourage networks to learn the style of facial attributes from the exemplar in a self-supervised way. To guarantee the natural transition across the boundary of inpainted regions, a novel spatial variant gradient backpropagation technique is designed to adjust the loss gradients based on the spatial location. A variety of experimental results and comparisons on public CelebA-HQ and FFHQ datasets are presented to demonstrate the superiority of the proposed method in terms of both the quality and diversity in facial inpainting.


Meta-Auto-Decoder for Solving Parametric Partial Differential Equations

arXiv.org Artificial Intelligence

Partial Differential Equations (PDEs) are ubiquitous in many disciplines of science and engineering and notoriously difficult to solve. In general, closed-form solutions of PDEs are unavailable and numerical approximation methods are computationally expensive. The parameters of PDEs are variable in many applications, such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In these applications, our goal is to solve parametric PDEs rather than one instance of them. Our proposed approach, called Meta-Auto-Decoder (MAD), treats solving parametric PDEs as a meta-learning problem and utilizes the Auto-Decoder structure in \cite{park2019deepsdf} to deal with different tasks/PDEs. Physics-informed losses induced from the PDE governing equations and boundary conditions is used as the training losses for different tasks. The goal of MAD is to learn a good model initialization that can generalize across different tasks, and eventually enables the unseen task to be learned faster. The inspiration of MAD comes from (conjectured) low-dimensional structure of parametric PDE solutions and we explain our approach from the perspective of manifold learning. Finally, we demonstrate the power of MAD though extensive numerical studies, including Burgers' equation, Laplace's equation and time-domain Maxwell's equations. MAD exhibits faster convergence speed without losing the accuracy compared with other deep learning methods.