Wang, Miaosen
ESG-FTSE: A corpus of news articles with ESG relevance labels and use cases
Pavlova, Mariya, Casey, Bernard, Wang, Miaosen
We present ESG-FTSE, the first corpus comprised of news articles with Environmental, Social and Governance (ESG) relevance annotations. In recent years, investors and regulators have pushed ESG investing to the mainstream due to the urgency of climate change. This has led to the rise of ESG scores to evaluate an investment's credentials as socially responsible. While demand for ESG scores is high, their quality varies wildly. Quantitative techniques can be applied to improve ESG scores, thus, responsible investing. To contribute to resource building for ESG and financial text mining, we pioneer the ESG-FTSE corpus. We further present the first of its kind ESG annotation schema. It has three levels: a binary classification (relevant versus irrelevant news articles), ESG classification (ESG-related news articles), and target company. Both supervised and unsupervised learning experiments for ESG relevance detection were conducted to demonstrate that the corpus can be used in different settings to derive accurate ESG predictions.
Optimizing Memory Mapping Using Deep Reinforcement Learning
Wang, Pengming, Sazanovich, Mikita, Ilbeyi, Berkin, Phothilimthana, Phitchaya Mangpo, Purohit, Manish, Tay, Han Yang, Vลฉ, Ngรขn, Wang, Miaosen, Paduraru, Cosmin, Leurent, Edouard, Zhernov, Anton, Huang, Po-Sen, Schrittwieser, Julian, Hubert, Thomas, Tung, Robert, Kurylowicz, Paula, Milan, Kieran, Vinyals, Oriol, Mankowitz, Daniel J.
Resource scheduling and allocation is a critical component of many high impact systems ranging from congestion control to cloud computing. Finding more optimal solutions to these problems often has significant impact on resource and time savings, reducing device wear-and-tear, and even potentially improving carbon emissions. In this paper, we focus on a specific instance of a scheduling problem, namely the memory mapping problem that occurs during compilation of machine learning programs: That is, mapping tensors to different memory layers to optimize execution time. We introduce an approach for solving the memory mapping problem using Reinforcement Learning. RL is a solution paradigm well-suited for sequential decision making problems that are amenable to planning, and combinatorial search spaces with high-dimensional data inputs. We formulate the problem as a single-player game, which we call the mallocGame, such that high-reward trajectories of the game correspond to efficient memory mappings on the target hardware. We also introduce a Reinforcement Learning agent, mallocMuZero, and show that it is capable of playing this game to discover new and improved memory mapping solutions that lead to faster execution times on real ML workloads on ML accelerators. We compare the performance of mallocMuZero to the default solver used by the Accelerated Linear Algebra (XLA) compiler on a benchmark of realistic ML workloads. In addition, we show that mallocMuZero is capable of improving the execution time of the recently published AlphaTensor matrix multiplication model.
Reinforced Self-Training (ReST) for Language Modeling
Gulcehre, Caglar, Paine, Tom Le, Srinivasan, Srivatsan, Konyushkova, Ksenia, Weerts, Lotte, Sharma, Abhishek, Siddhant, Aditya, Ahern, Alex, Wang, Miaosen, Gu, Chenjie, Macherey, Wolfgang, Doucet, Arnaud, Firat, Orhan, de Freitas, Nando
Reinforcement learning from human feedback (RLHF) can improve the quality of large language model's (LLM) outputs by aligning them with human preferences. We propose a simple algorithm for aligning LLMs with human preferences inspired by growing batch reinforcement learning (RL), which we call Reinforced Self-Training (ReST). Given an initial LLM policy, ReST produces a dataset by generating samples from the policy, which are then used to improve the LLM policy using offline RL algorithms. ReST is more efficient than typical online RLHF methods because the training dataset is produced offline, which allows data reuse. While ReST is a general approach applicable to all generative learning settings, we focus on its application to machine translation. Our results show that ReST can substantially improve translation quality, as measured by automated metrics and human evaluation on machine translation benchmarks in a compute and sample-efficient manner.