Goto

Collaborating Authors

 Wang, Mengdi


Self-Play with Adversarial Critic: Provable and Scalable Offline Alignment for Language Models

arXiv.org Artificial Intelligence

This work studies the challenge of aligning large language models (LLMs) with offline preference data. We focus on alignment by Reinforcement Learning from Human Feedback (RLHF) in particular. While popular preference optimization methods exhibit good empirical performance in practice, they are not theoretically guaranteed to converge to the optimal policy and can provably fail when the data coverage is sparse by classical offline reinforcement learning (RL) results. On the other hand, a recent line of work has focused on theoretically motivated preference optimization methods with provable guarantees, but these are not computationally efficient for large-scale applications like LLM alignment. To bridge this gap, we propose SPAC, a new offline preference optimization method with self-play, inspired by the on-average pessimism technique from the offline RL literature, to be the first provable and scalable approach to LLM alignment. We both provide theoretical analysis for its convergence under single-policy concentrability for the general function approximation setting and demonstrate its competitive empirical performance for LLM alignment on a 7B Mistral model with Open LLM Leaderboard evaluations.


Transfer Q Star: Principled Decoding for LLM Alignment

arXiv.org Artificial Intelligence

Aligning foundation models is essential for their safe and trustworthy deployment. However, traditional fine-tuning methods are computationally intensive and require updating billions of model parameters. A promising alternative, alignment via decoding, adjusts the response distribution directly without model updates to maximize a target reward $r$, thus providing a lightweight and adaptable framework for alignment. However, principled decoding methods rely on oracle access to an optimal Q-function ($Q^*$), which is often unavailable in practice. Hence, prior SoTA methods either approximate this $Q^*$ using $Q^{\pi_{\texttt{sft}}}$ (derived from the reference $\texttt{SFT}$ model) or rely on short-term rewards, resulting in sub-optimal decoding performance. In this work, we propose Transfer $Q^*$, which implicitly estimates the optimal value function for a target reward $r$ through a baseline model $\rho_{\texttt{BL}}$ aligned with a baseline reward $\rho_{\texttt{BL}}$ (which can be different from the target reward $r$). Theoretical analyses of Transfer $Q^*$ provide a rigorous characterization of its optimality, deriving an upper bound on the sub-optimality gap and identifying a hyperparameter to control the deviation from the pre-trained reference $\texttt{SFT}$ model based on user needs. Our approach significantly reduces the sub-optimality gap observed in prior SoTA methods and demonstrates superior empirical performance across key metrics such as coherence, diversity, and quality in extensive tests on several synthetic and real datasets.


AI Risk Management Should Incorporate Both Safety and Security

arXiv.org Artificial Intelligence

The exposure of security vulnerabilities in safety-aligned language models, e.g., susceptibility to adversarial attacks, has shed light on the intricate interplay between AI safety and AI security. Although the two disciplines now come together under the overarching goal of AI risk management, they have historically evolved separately, giving rise to differing perspectives. Therefore, in this paper, we advocate that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security, and unambiguously take into account the perspectives of both disciplines in order to devise mostly effective and holistic risk mitigation approaches. Unfortunately, this vision is often obfuscated, as the definitions of the basic concepts of "safety" and "security" themselves are often inconsistent and lack consensus across communities. With AI risk management being increasingly cross-disciplinary, this issue is particularly salient. In light of this conceptual challenge, we introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security, aiming to facilitate a shared understanding and effective collaboration across communities.


Embodied LLM Agents Learn to Cooperate in Organized Teams

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.


CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments

arXiv.org Artificial Intelligence

The introduction of genome engineering technology has transformed biomedical research, making it possible to make precise changes to genetic information. However, creating an efficient gene-editing system requires a deep understanding of CRISPR technology, and the complex experimental systems under investigation. While Large Language Models (LLMs) have shown promise in various tasks, they often lack specific knowledge and struggle to accurately solve biological design problems. In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments. CRISPR-GPT leverages the reasoning ability of LLMs to facilitate the process of selecting CRISPR systems, designing guide RNAs, recommending cellular delivery methods, drafting protocols, and designing validation experiments to confirm editing outcomes. We showcase the potential of CRISPR-GPT for assisting non-expert researchers with gene-editing experiments from scratch and validate the agent's effectiveness in a real-world use case. Furthermore, we explore the ethical and regulatory considerations associated with automated gene-editing design, highlighting the need for responsible and transparent use of these tools. Our work aims to bridge the gap between beginner biological researchers and CRISPR genome engineering techniques, and demonstrate the potential of LLM agents in facilitating complex biological discovery tasks.


Gradient Guidance for Diffusion Models: An Optimization Perspective

arXiv.org Machine Learning

Diffusion models have demonstrated empirical successes in various applications and can be adapted to task-specific needs via guidance. This paper introduces a form of gradient guidance for adapting or fine-tuning diffusion models towards user-specified optimization objectives. We study the theoretic aspects of a guided score-based sampling process, linking the gradient-guided diffusion model to first-order optimization. We show that adding gradient guidance to the sampling process of a pre-trained diffusion model is essentially equivalent to solving a regularized optimization problem, where the regularization term acts as a prior determined by the pre-training data. Diffusion models are able to learn data's latent subspace, however, explicitly adding the gradient of an external objective function to the sample process would jeopardize the structure in generated samples. To remedy this issue, we consider a modified form of gradient guidance based on a forward prediction loss, which leverages the pre-trained score function to preserve the latent structure in generated samples. We further consider an iteratively fine-tuned version of gradient-guided diffusion where one can query gradients at newly generated data points and update the score network using new samples. This process mimics a first-order optimization iteration in expectation, for which we proved O(1/K) convergence rate to the global optimum when the objective function is concave.


An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization

arXiv.org Machine Learning

Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.


Diffusion Model for Data-Driven Black-Box Optimization

arXiv.org Artificial Intelligence

Generative AI has redefined artificial intelligence, enabling the creation of innovative content and customized solutions that drive business practices into a new era of efficiency and creativity. In this paper, we focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization over complex structured variables. Consider the practical scenario where one wants to optimize some structured design in a high-dimensional space, based on massive unlabeled data (representing design variables) and a small labeled dataset. We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons. The goal is to generate new designs that are near-optimal and preserve the designed latent structures. Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models for modeling complex distributions. In particular, we propose a reward-directed conditional diffusion model, to be trained on the mixed data, for sampling a near-optimal solution conditioned on high predicted rewards. Theoretically, we establish sub-optimality error bounds for the generated designs. The sub-optimality gap nearly matches the optimal guarantee in off-policy bandits, demonstrating the efficiency of reward-directed diffusion models for black-box optimization. Moreover, when the data admits a low-dimensional latent subspace structure, our model efficiently generates high-fidelity designs that closely respect the latent structure. We provide empirical experiments validating our model in decision-making and content-creation tasks.


Offline Multitask Representation Learning for Reinforcement Learning

arXiv.org Artificial Intelligence

We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.


Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory

arXiv.org Artificial Intelligence

Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning. In these applications, conditional diffusion models incorporate various conditional information, such as prompt input, to guide the sample generation towards desired properties. Despite the empirical success, theory of conditional diffusion models is largely missing. This paper bridges this gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models. Our analysis yields a sample complexity bound that adapts to the smoothness of the data distribution and matches the minimax lower bound. The key to our theoretical development lies in an approximation result for the conditional score function, which relies on a novel diffused Taylor approximation technique. Moreover, we demonstrate the utility of our statistical theory in elucidating the performance of conditional diffusion models across diverse applications, including model-based transition kernel estimation in reinforcement learning, solving inverse problems, and reward conditioned sample generation.