Wang, Luoyu
SEE: Semantically Aligned EEG-to-Text Translation
Tao, Yitian, Liang, Yan, Wang, Luoyu, Li, Yongqing, Yang, Qing, Zhang, Han
Decoding neurophysiological signals into language is of great research interest within brain-computer interface (BCI) applications. Electroencephalography (EEG), known for its non-invasiveness, ease of use, and cost-effectiveness, has been a popular method in this field. However, current EEG-to-Text decoding approaches face challenges due to the huge domain gap between EEG recordings and raw texts, inherent data bias, and small closed vocabularies. In this paper, we propose SEE: Semantically Aligned EEG-to-Text Translation, a novel method aimed at improving EEG-to-Text decoding by seamlessly integrating two modules into a pre-trained BART language model. These two modules include (1) a Cross-Modal Codebook that learns cross-modal representations to enhance feature consolidation and mitigate domain gap, and (2) a Semantic Matching Module that fully utilizes pre-trained text representations to align multi-modal features extracted from EEG-Text pairs while considering noise caused by false negatives, i.e., data from different EEG-Text pairs that have similar semantic meanings. Experimental results on the Zurich Cognitive Language Processing Corpus (ZuCo) demonstrate the effectiveness of SEE, which enhances the feasibility of accurate EEG-to-Text decoding.
Revolutionizing Disease Diagnosis with simultaneous functional PET/MR and Deeply Integrated Brain Metabolic, Hemodynamic, and Perfusion Networks
Wang, Luoyu, Tao, Yitian, Yang, Qing, Liang, Yan, Liu, Siwei, Shi, Hongcheng, Shen, Dinggang, Zhang, Han
It provides an unprecedented opportunity for concurrently monitoring and integrating multifaceted brain networks built by spatiotemporally covaried metabolic activity, neural activity, and cerebral blood flow (perfusion). Albeit high scientific/clinical values, short in hardware accessibility of PET/MR hinders its applications, let alone modern AI-based PET/MR fusion models. Our objective is to develop a clinically feasible AI-based disease diagnosis model trained on comprehensive sf-PET/MR data with the power of, during inferencing, allowing single modality input (e.g., PET only) as well as enforcing multimodal-based accuracy. To this end, we propose MX-ARM, a multimodal MiXture-of-experts Alignment and Reconstruction Model. It is modality detachable and exchangeable, allocating different multi-layer perceptrons dynamically ("mixture of experts") through learnable weights to learn respective representations from different modalities. Such design will not sacrifice model performance in uni-modal situation. To fully exploit the inherent complex and nonlinear relation among modalities while producing fine-grained representations for uni-modal inference, we subsequently add a modal alignment module to line up a dominant modality (e.g., PET) with representations of auxiliary modalities (MR). We further adopt multimodal reconstruction to promote the quality of learned features.