Wang, Lu
SPHERE: A Hierarchical Evaluation on Spatial Perception and Reasoning for Vision-Language Models
Zhang, Wenyu, Ng, Wei En, Ma, Lixin, Wang, Yuwen, Zhao, Jungqi, Li, Boyang, Wang, Lu
Current vision-language models may incorporate single-dimensional spatial cues, such as depth, object boundary, and basic spatial directions (e.g. left, right, front, back), yet often lack the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications. To address this gap, we develop SPHERE (Spatial Perception and Hierarchical Evaluation of REasoning), a hierarchical evaluation framework with a new human-annotated dataset to pinpoint model strengths and weaknesses, advancing from single-skill tasks to multi-skill tasks, and ultimately to complex reasoning tasks that require the integration of multiple spatial and visual cues with logical reasoning. Benchmark evaluation of state-of-the-art open-source models reveal significant shortcomings, especially in the abilities to understand distance and proximity, to reason from both allocentric and egocentric viewpoints, and to perform complex reasoning in a physical context. This work underscores the need for more advanced approaches to spatial understanding and reasoning, paving the way for improvements in vision-language models and their alignment with human-like spatial capabilities. The dataset will be open-sourced upon publication.
If You Can't Use Them, Recycle Them: Optimizing Merging at Scale Mitigates Performance Tradeoffs
Khalifa, Muhammad, Tan, Yi-Chern, Ahmadian, Arash, Hosking, Tom, Lee, Honglak, Wang, Lu, รstรผn, Ahmet, Sherborne, Tom, Gallรฉ, Matthias
Model merging has shown great promise at combining expert models, but the benefit of merging is unclear when merging ``generalist'' models trained on many tasks. We explore merging in the context of large (~100B) models, by recycling checkpoints that exhibit tradeoffs among different tasks. Such checkpoints are often created in the process of developing a frontier model, and many suboptimal ones are usually discarded. Given a pool of model checkpoints obtained from different training runs (e.g., different stages, objectives, hyperparameters, and data mixtures), which naturally show tradeoffs across different language capabilities (e.g., instruction following vs. code generation), we investigate whether merging can recycle such suboptimal models into a Pareto-optimal one. Our optimization algorithm tunes the weight of each checkpoint in a linear combination, resulting in a Pareto-optimal models that outperforms both individual models and merge-based baselines. Further analysis shows that good merges tend to include almost all checkpoints with non-zero weights, indicating that even seemingly bad initial checkpoints can contribute to good final merges.
ASR-EC Benchmark: Evaluating Large Language Models on Chinese ASR Error Correction
Wei, Victor Junqiu, Wang, Weicheng, Jiang, Di, Song, Yuanfeng, Wang, Lu
Automatic speech Recognition (ASR) is a fundamental and important task in the field of speech and natural language processing. It is an inherent building block in many applications such as voice assistant, speech translation, etc. Despite the advancement of ASR technologies in recent years, it is still inevitable for modern ASR systems to have a substantial number of erroneous recognition due to environmental noise, ambiguity, etc. Therefore, the error correction in ASR is crucial. Motivated by this, this paper studies ASR error correction in the Chinese language, which is one of the most popular languages and enjoys a large number of users in the world. We first create a benchmark dataset named \emph{ASR-EC} that contains a wide spectrum of ASR errors generated by industry-grade ASR systems. To the best of our knowledge, it is the first Chinese ASR error correction benchmark. Then, inspired by the recent advances in \emph{large language models (LLMs)}, we investigate how to harness the power of LLMs to correct ASR errors. We apply LLMs to ASR error correction in three paradigms. The first paradigm is prompting, which is further categorized as zero-shot, few-shot, and multi-step. The second paradigm is finetuning, which finetunes LLMs with ASR error correction data. The third paradigm is multi-modal augmentation, which collectively utilizes the audio and ASR transcripts for error correction. Extensive experiments reveal that prompting is not effective for ASR error correction. Finetuning is effective only for a portion of LLMs. Multi-modal augmentation is the most effective method for error correction and achieves state-of-the-art performance.
Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
Li, Dongyue, Zhang, Ziniu, Wang, Lu, Zhang, Hongyang R.
We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are useful to improve the performance of the target task. Thus, choosing the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward and backward stepwise selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm to estimate model fine-tuning performances without repeated training. Our algorithm first performs multitask training using the data of all the tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. Finally, we fine-tune the pretrained base model for once on the selected subset of tasks. We conduct extensive experiments to validate this approach, delivering a speedup of $30\times$ over conventional subset selection while incurring only $1\%$ error of the true fine-tuning performances. In downstream evaluations involving both instruction tuning and chain-of-thought fine-tuning, this loss-based selection approach improves over prior gradient or representation similarity-based methods for subset selection by up to $3.8\%$.
Narrative-of-Thought: Improving Temporal Reasoning of Large Language Models via Recounted Narratives
Zhang, Xinliang Frederick, Beauchamp, Nick, Wang, Lu
Reasoning about time and temporal relations is an integral aspect of human cognition, essential for perceiving the world and navigating our experiences. Though large language models (LLMs) have demonstrated impressive performance in many reasoning tasks, temporal reasoning remains challenging due to its intrinsic complexity. In this work, we first study an essential task of temporal reasoning -- temporal graph generation, to unveil LLMs' inherent, global reasoning capabilities. We show that this task presents great challenges even for the most powerful LLMs, such as GPT-3.5/4. We also notice a significant performance gap by small models (<10B) that lag behind LLMs by 50%. Next, we study how to close this gap with a budget constraint, e.g., not using model finetuning. We propose a new prompting technique tailored for temporal reasoning, Narrative-of-Thought (NoT), that first converts the events set to a Python class, then prompts a small model to generate a temporally grounded narrative, guiding the final generation of a temporal graph. Extensive experiments showcase the efficacy of NoT in improving various metrics. Notably, NoT attains the highest F1 on the Schema-11 evaluation set, while securing an overall F1 on par with GPT-3.5. NoT also achieves the best structural similarity across the board, even compared with GPT-3.5/4. Our code is available at https://github.com/launchnlp/NoT.
Retrieval or Global Context Understanding? On Many-Shot In-Context Learning for Long-Context Evaluation
Zou, Kaijian, Khalifa, Muhammad, Wang, Lu
Language models (LMs) have demonstrated an improved capacity to handle long-context information, yet existing long-context benchmarks primarily measure LMs' retrieval abilities with extended inputs, e.g., pinpointing a short phrase from long-form text. Therefore, they may fall short when evaluating models' global context understanding capacity, such as synthesizing and reasoning over content across input to generate the response. In this paper, we study long-context language model (LCLM) evaluation through many-shot in-context learning (ICL). Concretely, we identify the skills each ICL task requires, and examine models' long-context capabilities on them. We first ask: What types of ICL tasks benefit from additional demonstrations, and are these tasks effective at evaluating LCLMs? We find that classification and summarization tasks show notable performance improvements with additional demonstrations, while translation and reasoning tasks do not exhibit clear trends. This suggests the classification tasks predominantly test models' retrieval skills. Next, we ask: To what extent does each task require retrieval skills versus global context understanding from LCLMs? We develop metrics to categorize ICL tasks into two groups: (i) retrieval tasks that require strong retrieval ability to pinpoint relevant examples, and (ii) global context understanding tasks that necessitate a deeper comprehension of the full input. We find that not all datasets can effectively evaluate these long-context capabilities. To address this gap, we introduce a new many-shot ICL benchmark, MANYICLBENCH, designed to characterize LCLMs' retrieval and global context understanding capabilities separately. Benchmarking 11 open-weight LCLMs with MANYICLBENCH, we find that while state-of-the-art models perform well in retrieval tasks up to 64k tokens, many show significant drops in global context tasks at just 16k tokens.
RuAG: Learned-rule-augmented Generation for Large Language Models
Zhang, Yudi, Xiao, Pei, Wang, Lu, Zhang, Chaoyun, Fang, Meng, Du, Yali, Puzyrev, Yevgeniy, Yao, Randolph, Qin, Si, Lin, Qingwei, Pechenizkiy, Mykola, Zhang, Dongmei, Rajmohan, Saravan, Zhang, Qi
In-context learning (ICL) and Retrieval-Augmented Generation (RAG) have gained attention for their ability to enhance LLMs' reasoning by incorporating external knowledge but suffer from limited contextual window size, leading to insufficient information injection. To this end, we propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules, which are injected into LLMs to boost their reasoning capabilities. Our method begins by formulating the search process relying on LLMs' commonsense, where LLMs automatically define head and body predicates. Then, RuAG applies Monte Carlo Tree Search (MCTS) to address the combinational searching space and efficiently discover logic rules from data. The resulting logic rules are translated into natural language, allowing targeted knowledge injection and seamless integration into LLM prompts for LLM's downstream task reasoning. We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks, demonstrating its effectiveness in enhancing LLM's capability over diverse tasks.
Self-Evolved Reward Learning for LLMs
Huang, Chenghua, Fan, Zhizhen, Wang, Lu, Yang, Fangkai, Zhao, Pu, Lin, Zeqi, Lin, Qingwei, Zhang, Dongmei, Rajmohan, Saravan, Zhang, Qi
Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences, playing a pivotal role in the success of conversational models like GPT-4, ChatGPT, and Llama 2. A core challenge in employing RLHF lies in training a reliable reward model (RM), which relies on high-quality labels typically provided by human experts or advanced AI system. These methods can be costly and may introduce biases that affect the language model's responses. As language models improve, human input may become less effective in further enhancing their performance. In this paper, we propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself. We conducted extensive experiments on multiple datasets such as HH-RLHF and UltraFeedback, using models like Mistral and Llama 3, and compare SER against various baselines. Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance, thereby boosting the capabilities of large language models (LLMs). Reinforcement Learning from Human Feedback (RLHF) is a well-established approach that aligns Large Language Models (LLMs) with human preference data Ouyang et al. (2022); Bai et al. (2022b). The standard approach involves learning a reward model (RM) from human preferences and the learned RM is then frozen to train LLMs via Reinforcement Learning (RL) such as Proximal Policy Optimization (PPO) Schulman et al. (2017a). Another common approach directly trains LLMs from the human preference data without learning an RM such as Direct Preference Optimiztion (DPO) Rafailov et al. (2024). Both approaches rely heavily on the size and quality of human-annotated preference data. However, the availability of such data is often limited and expensive to acquire, posing a significant bottleneck in the development and performance of RL approaches Yuan et al. (2024b). This dependency on human-annotated data hinders the scalability of strong LLMs that require vast amounts of labeled data to achieve greater performance Kaplan et al. (2020); Muennighoff et al. (2024). To mitigate the dependency, recent works leverage the AI feedback to train RMs, referred to as Reinforcement Learning from AI Feedback (RLAIF) Bai et al. (2022b); Lee et al. (2023), which reduces the reliance on human-annotated data.
Token-level Proximal Policy Optimization for Query Generation
Ouyang, Yichen, Wang, Lu, Yang, Fangkai, Zhao, Pu, Huang, Chenghua, Liu, Jianfeng, Pang, Bochen, Yang, Yaming, Zhan, Yuefeng, Sun, Hao, Lin, Qingwei, Rajmohan, Saravan, Deng, Weiwei, Zhang, Dongmei, Sun, Feng, Zhang, Qi
Query generation is a critical task for web search engines (e.g. Google, Bing) and recommendation systems. Recently, state-of-the-art query generation methods leverage Large Language Models (LLMs) for their strong capabilities in context understanding and text generation. However, they still face challenges in generating high-quality queries in terms of inferring user intent based on their web search interaction history. In this paper, we propose Token-level Proximal Policy Optimization (TPPO), a noval approach designed to empower LLMs perform better in query generation through fine-tuning. TPPO is based on the Reinforcement Learning from AI Feedback (RLAIF) paradigm, consisting of a token-level reward model and a token-level proximal policy optimization module to address the sparse reward challenge in traditional RLAIF frameworks. To evaluate the effectiveness and robustness of TPPO, we conducted experiments on both open-source dataset and an industrial dataset that was collected from a globally-used search engine. The experimental results demonstrate that TPPO significantly improves the performance of query generation for LLMs and outperforms its existing competitors.
Deep Learning-Driven Microstructure Characterization and Vickers Hardness Prediction of Mg-Gd Alloys
Wang, Lu, Chen, Hongchan, Wang, Bing, Li, Qian, Luo, Qun, Han, Yuexing
In the field of materials science, exploring the relationship between composition, microstructure, and properties has long been a critical research focus. The mechanical performance of solid-solution Mg-Gd alloys is significantly influenced by Gd content, dendritic structures, and the presence of secondary phases. To better analyze and predict the impact of these factors, this study proposes a multimodal fusion learning framework based on image processing and deep learning techniques. This framework integrates both elemental composition and microstructural features to accurately predict the Vickers hardness of solid-solution Mg-Gd alloys. Initially, deep learning methods were employed to extract microstructural information from a variety of solid-solution Mg-Gd alloy images obtained from literature and experiments. This provided precise grain size and secondary phase microstructural features for performance prediction tasks. Subsequently, these quantitative analysis results were combined with Gd content information to construct a performance prediction dataset. Finally, a regression model based on the Transformer architecture was used to predict the Vickers hardness of Mg-Gd alloys. The experimental results indicate that the Transformer model performs best in terms of prediction accuracy, achieving an R^2 value of 0.9. Additionally, SHAP analysis identified critical values for four key features affecting the Vickers hardness of Mg-Gd alloys, providing valuable guidance for alloy design. These findings not only enhance the understanding of alloy performance but also offer theoretical support for future material design and optimization.