Wang, Lizhi
Physics-guided Noise Neural Proxy for Practical Low-light Raw Image Denoising
Feng, Hansen, Wang, Lizhi, Huang, Yiqi, Wang, Yuzhi, Zhu, Lin, Huang, Hua
Recently, the mainstream practice for training low-light raw image denoising methods has shifted towards employing synthetic data. Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data. Currently, physics-based noise modeling struggles to characterize the entire real noise distribution, while learning-based noise modeling impractically depends on paired real data. In this paper, we propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency. Based on this strategy, we introduce an efficient physics-guided noise neural proxy (PNNP) to approximate the real-world sensor noise model. Specifically, we integrate physical priors into neural proxies and introduce three efficient techniques: physics-guided noise decoupling (PND), physics-guided proxy model (PPM), and differentiable distribution loss (DDL). PND decouples the dark frame into different components and handles different levels of noise flexibly, which reduces the complexity of noise modeling. PPM incorporates physical priors to constrain the generated noise, which promotes the accuracy of noise modeling. DDL provides explicit and reliable supervision for noise distribution, which promotes the precision of noise modeling. PNNP exhibits powerful potential in characterizing the real noise distribution. Extensive experiments on public datasets demonstrate superior performance in practical low-light raw image denoising. The code will be available at \url{https://github.com/fenghansen/PNNP}.
A Hybrid Deep Learning-based Approach for Optimal Genotype by Environment Selection
Khalilzadeh, Zahra, Kashanian, Motahareh, Khaki, Saeed, Wang, Lizhi
Precise crop yield prediction is essential for improving agricultural practices and ensuring crop resilience in varying climates. Integrating weather data across the growing season, especially for different crop varieties, is crucial for understanding their adaptability in the face of climate change. In the MLCAS2021 Crop Yield Prediction Challenge, we utilized a dataset comprising 93,028 training records to forecast yields for 10,337 test records, covering 159 locations across 28 U.S. states and Canadian provinces over 13 years (2003-2015). This dataset included details on 5,838 distinct genotypes and daily weather data for a 214-day growing season, enabling comprehensive analysis. As one of the winning teams, we developed two novel convolutional neural network (CNN) architectures: the CNN-DNN model, combining CNN and fully-connected networks, and the CNN-LSTM-DNN model, with an added LSTM layer for weather variables. Leveraging the Generalized Ensemble Method (GEM), we determined optimal model weights, resulting in superior performance compared to baseline models. The GEM model achieved lower RMSE (5.55% to 39.88%), reduced MAE (5.34% to 43.76%), and higher correlation coefficients (1.1% to 10.79%) when evaluated on test data. We applied the CNN-DNN model to identify top-performing genotypes for various locations and weather conditions, aiding genotype selection based on weather variables. Our data-driven approach is valuable for scenarios with limited testing years. Additionally, a feature importance analysis using RMSE change highlighted the significance of location, MG, year, and genotype, along with the importance of weather variables MDNI and AP.
SoccerNet 2023 Challenges Results
Cioppa, Anthony, Giancola, Silvio, Somers, Vladimir, Magera, Floriane, Zhou, Xin, Mkhallati, Hassan, Deliรจge, Adrien, Held, Jan, Hinojosa, Carlos, Mansourian, Amir M., Miralles, Pierre, Barnich, Olivier, De Vleeschouwer, Christophe, Alahi, Alexandre, Ghanem, Bernard, Van Droogenbroeck, Marc, Kamal, Abdullah, Maglo, Adrien, Clapรฉs, Albert, Abdelaziz, Amr, Xarles, Artur, Orcesi, Astrid, Scott, Atom, Liu, Bin, Lim, Byoungkwon, Chen, Chen, Deuser, Fabian, Yan, Feng, Yu, Fufu, Shitrit, Gal, Wang, Guanshuo, Choi, Gyusik, Kim, Hankyul, Guo, Hao, Fahrudin, Hasby, Koguchi, Hidenari, Ardรถ, Hรฅkan, Salah, Ibrahim, Yerushalmy, Ido, Muhammad, Iftikar, Uchida, Ikuma, Be'ery, Ishay, Rabarisoa, Jaonary, Lee, Jeongae, Fu, Jiajun, Yin, Jianqin, Xu, Jinghang, Nang, Jongho, Denize, Julien, Li, Junjie, Zhang, Junpei, Kim, Juntae, Synowiec, Kamil, Kobayashi, Kenji, Zhang, Kexin, Habel, Konrad, Nakajima, Kota, Jiao, Licheng, Ma, Lin, Wang, Lizhi, Wang, Luping, Li, Menglong, Zhou, Mengying, Nasr, Mohamed, Abdelwahed, Mohamed, Liashuha, Mykola, Falaleev, Nikolay, Oswald, Norbert, Jia, Qiong, Pham, Quoc-Cuong, Song, Ran, Hรฉrault, Romain, Peng, Rui, Chen, Ruilong, Liu, Ruixuan, Baikulov, Ruslan, Fukushima, Ryuto, Escalera, Sergio, Lee, Seungcheon, Chen, Shimin, Ding, Shouhong, Someya, Taiga, Moeslund, Thomas B., Li, Tianjiao, Shen, Wei, Zhang, Wei, Li, Wei, Dai, Wei, Luo, Weixin, Zhao, Wending, Zhang, Wenjie, Yang, Xinquan, Ma, Yanbiao, Joo, Yeeun, Zeng, Yingsen, Gan, Yiyang, Zhu, Yongqiang, Zhong, Yujie, Ruan, Zheng, Li, Zhiheng, Huang, Zhijian, Meng, Ziyu
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
Risk-averse Stochastic Optimization for Farm Management Practices and Cultivar Selection Under Uncertainty
Akhavizadegan, Faezeh, Ansarifar, Javad, Wang, Lizhi, Archontoulis, Sotirios V.
Optimizing management practices and selecting the best cultivar for planting play a significant role in increasing agricultural food production and decreasing environmental footprint. In this study, we develop optimization frameworks under uncertainty using conditional value-at-risk in the stochastic programming objective function. We integrate the crop model, APSIM, and a parallel Bayesian optimization algorithm to optimize the management practices and select the best cultivar at different levels of risk aversion. This approach integrates the power of optimization in determining the best decisions and crop model in simulating nature's output corresponding to various decisions. As a case study, we set up the crop model for 25 locations across the US Corn Belt. We optimized the management options (planting date, N fertilizer amount, fertilizing date, and plant density in the farm) and cultivar options (cultivars with different maturity days) three times: a) before, b) at planting and c) after a growing season with known weather. Results indicated that the proposed model produced meaningful connections between weather and optima decisions. Also, we found risk-tolerance farmers get more expected yield than risk-averse ones in wet and non-wet weathers.
A reinforcement learning approach to resource allocation in genomic selection
Moeinizade, Saba, Hu, Guiping, Wang, Lizhi
Genomic selection (GS) is a technique that plant breeders use to select individuals to mate and produce new generations of species. Allocation of resources is a key factor in GS. At each selection cycle, breeders are facing the choice of budget allocation to make crosses and produce the next generation of breeding parents. Inspired by recent advances in reinforcement learning for AI problems, we develop a reinforcement learning-based algorithm to automatically learn to allocate limited resources across different generations of breeding. We mathematically formulate the problem in the framework of Markov Decision Process (MDP) by defining state and action spaces. To avoid the explosion of the state space, an integer linear program is proposed that quantifies the trade-off between resources and time. Finally, we propose a value function approximation method to estimate the action-value function and then develop a greedy policy improvement technique to find the optimal resources. We demonstrate the effectiveness of the proposed method in enhancing genetic gain using a case study with realistic data.
Crop Yield Prediction Using Deep Neural Networks
Khaki, Saeed, Wang, Lizhi
Crop yield is a highly complex trait determined by multiple factors such as genotype, environment, and their interactions. Accurate yield prediction requires fundamental understanding of the functional relationship between yield and these interactive factors, and to reveal such relationship requires both comprehensive datasets and powerful algorithms. In the 2018 Syngenta Crop Challenge, Syngenta released several large datasets that recorded the genotype and yield performances of 2,267 maize hybrids planted in 2,247 locations between 2008 and 2016 and asked participants to predict the yield performance in 2017. As one of the winning teams, we designed a deep neural network (DNN) approach that took advantage of state-of-the-art modeling and solution techniques. Our model was found to have a superior prediction accuracy, with a root-mean-square-error (RMSE) being 12% of the average yield and 50% of the standard deviation for the validation dataset using predicted weather data. With perfect weather data, the RMSE would be reduced to 11% of the average yield and 46% of the standard deviation. Our computational results suggested that this model significantly outperformed other popular methods such as Lasso, shallow neural networks (SNN), and regression tree (RT).