Wang, Liquan
Discovering Robotic Interaction Modes with Discrete Representation Learning
Wang, Liquan, Goyal, Ankit, Xu, Haoping, Garg, Animesh
Human actions manipulating articulated objects, such as opening and closing a drawer, can be categorized into multiple modalities we define as interaction modes. Traditional robot learning approaches lack discrete representations of these modes, which are crucial for empirical sampling and grounding. In this paper, we present ActAIM2, which learns a discrete representation of robot manipulation interaction modes in a purely unsupervised fashion, without the use of expert labels or simulator-based privileged information. Utilizing novel data collection methods involving simulator rollouts, ActAIM2 consists of an interaction mode selector and a low-level action predictor. The selector generates discrete representations of potential interaction modes with self-supervision, while the predictor outputs corresponding action trajectories. Our method is validated through its success rate in manipulating articulated objects and its robustness in sampling meaningful actions from the discrete representation. Extensive experiments demonstrate ActAIM2's effectiveness in enhancing manipulability and generalizability over baselines and ablation studies. For videos and additional results, see our website: https://actaim2.github.io/.
Learning Agility and Adaptive Legged Locomotion via Curricular Hindsight Reinforcement Learning
Li, Sicen, Pang, Yiming, Bai, Panju, Liu, Zhaojin, Li, Jiawei, Hu, Shihao, Wang, Liquan, Wang, Gang
Agile and adaptive maneuvers such as fall recovery, high-speed turning, and sprinting in the wild are challenging for legged systems. We propose a Curricular Hindsight Reinforcement Learning (CHRL) that learns an end-to-end tracking controller that achieves powerful agility and adaptation for the legged robot. The two key components are (I) a novel automatic curriculum strategy on task difficulty and (ii) a Hindsight Experience Replay strategy adapted to legged locomotion tasks. We demonstrated successful agile and adaptive locomotion on a real quadruped robot that performed fall recovery autonomously, coherent trotting, sustained outdoor speeds up to 3.45 m/s, and tuning speeds up to 3.2 rad/s. This system produces adaptive behaviours responding to changing situations and unexpected disturbances on natural terrains like grass and dirt.
Self-Supervised Learning of Action Affordances as Interaction Modes
Wang, Liquan, Dvornik, Nikita, Dubeau, Rafael, Mittal, Mayank, Garg, Animesh
When humans perform a task with an articulated object, they interact with the object only in a handful of ways, while the space of all possible interactions is nearly endless. This is because humans have prior knowledge about what interactions are likely to be successful, i.e., to open a new door we first try the handle. While learning such priors without supervision is easy for humans, it is notoriously hard for machines. In this work, we tackle unsupervised learning of priors of useful interactions with articulated objects, which we call interaction modes. In contrast to the prior art, we use no supervision or privileged information; we only assume access to the depth sensor in the simulator to learn the interaction modes. More precisely, we define a successful interaction as the one changing the visual environment substantially and learn a generative model of such interactions, that can be conditioned on the desired goal state of the object. In our experiments, we show that our model covers most of the human interaction modes, outperforms existing state-of-the-art methods for affordance learning, and can generalize to objects never seen during training. Additionally, we show promising results in the goal-conditional setup, where our model can be quickly fine-tuned to perform a given task. We show in the experiments that such affordance learning predicts interaction which covers most modes of interaction for the querying articulated object and can be fine-tuned to a goal-conditional model. For supplementary: https://actaim.github.io.