Wang, Linhan
Chasing the Timber Trail: Machine Learning to Reveal Harvest Location Misrepresentation
Sarkar, Shailik, Yousuf, Raquib Bin, Wang, Linhan, Mayer, Brian, Mortier, Thomas, Deklerck, Victor, Truszkowski, Jakub, Simeone, John C., Norman, Marigold, Saunders, Jade, Lu, Chang-Tien, Ramakrishnan, Naren
Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest location of traded, organic, products. The spatial pattern in stable isotope ratio values depends on factors such as atmospheric and environmental conditions and can thus be used for geographic origin identification. We present here the results of a deployed machine learning pipeline where we leverage both isotope values and atmospheric variables to determine timber harvest location. Additionally, the pipeline incorporates uncertainty estimation to facilitate the interpretation of harvest location determination for analysts. We present our experiments on a collection of oak (Quercus spp.) tree samples from its global range. Our pipeline outperforms comparable state-of-the-art models determining geographic harvest origin of commercially traded wood products, and has been used by European enforcement agencies to identify harvest location misrepresentation. We also identify opportunities for further advancement of our framework and how it can be generalized to help identify the origin of falsely labeled organic products throughout the supply chain.
KHAIT: K-9 Handler Artificial Intelligence Teaming for Collaborative Sensemaking
Wilchek, Matthew, Wang, Linhan, Dickinson, Sally, Feuerbacher, Erica, Luther, Kurt, Batarseh, Feras A.
In urban search and rescue (USAR) operations, communication between handlers and specially trained canines is crucial but often complicated by challenging environments and the specific behaviors canines are trained to exhibit when detecting a person. Since a USAR canine often works out of sight of the handler, the handler lacks awareness of the canine's location and situation, known as the 'sensemaking gap.' In this paper, we propose KHAIT, a novel approach to close the sensemaking gap and enhance USAR effectiveness by integrating object detection-based Artificial Intelligence (AI) and Augmented Reality (AR). Equipped with AI-powered cameras, edge computing, and AR headsets, KHAIT enables precise and rapid object detection from a canine's perspective, improving survivor localization. We evaluate this approach in a real-world USAR environment, demonstrating an average survival allocation time decrease of 22%, enhancing the speed and accuracy of operations.
Downscaling Precipitation with Bias-informed Conditional Diffusion Model
Lyu, Ran, Wang, Linhan, Sun, Yanshen, Bai, Hedanqiu, Lu, Chang-Tien
Climate change is intensifying rainfall extremes, making high-resolution precipitation projections crucial for society to better prepare for impacts such as flooding. However, current Global Climate Models (GCMs) operate at spatial resolutions too coarse for localized analyses. To address this limitation, deep learning-based statistical downscaling methods offer promising solutions, providing high-resolution precipitation projections with a moderate computational cost. In this work, we introduce a bias-informed conditional diffusion model for statistical downscaling of precipitation. Specifically, our model leverages a conditional diffusion approach to learn distribution priors from large-scale, high-resolution precipitation datasets. The long-tail distribution of precipitation poses a unique challenge for training diffusion models; to address this, we apply gamma correction during preprocessing. Additionally, to correct biases in the downscaled results, we employ a guided-sampling strategy to enhance bias correction. Our experiments demonstrate that the proposed model achieves highly accurate results in an 8 times downscaling setting, outperforming previous deterministic methods. The code and dataset are available at https://github.com/RoseLV/research_super-resolution
Stock Movement and Volatility Prediction from Tweets, Macroeconomic Factors and Historical Prices
Wang, Shengkun, Bai, YangXiao, Ji, Taoran, Fu, Kaiqun, Wang, Linhan, Lu, Chang-Tien
Predicting stock market is vital for investors and policymakers, acting as a barometer of the economic health. We leverage social media data, a potent source of public sentiment, in tandem with macroeconomic indicators as government-compiled statistics, to refine stock market predictions. However, prior research using tweet data for stock market prediction faces three challenges. First, the quality of tweets varies widely. While many are filled with noise and irrelevant details, only a few genuinely mirror the actual market scenario. Second, solely focusing on the historical data of a particular stock without considering its sector can lead to oversight. Stocks within the same industry often exhibit correlated price behaviors. Lastly, simply forecasting the direction of price movement without assessing its magnitude is of limited value, as the extent of the rise or fall truly determines profitability. In this paper, diverging from the conventional methods, we pioneer an ECON. The framework has following advantages: First, ECON has an adept tweets filter that efficiently extracts and decodes the vast array of tweet data. Second, ECON discerns multi-level relationships among stocks, sectors, and macroeconomic factors through a self-aware mechanism in semantic space. Third, ECON offers enhanced accuracy in predicting substantial stock price fluctuations by capitalizing on stock price movement. We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.
ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock Movement and Volatility Prediction
Wang, Shengkun, Bai, YangXiao, Fu, Kaiqun, Wang, Linhan, Lu, Chang-Tien, Ji, Taoran
For both investors and policymakers, forecasting the stock market is essential as it serves as an indicator of economic well-being. To this end, we harness the power of social media data, a rich source of public sentiment, to enhance the accuracy of stock market predictions. Diverging from conventional methods, we pioneer an approach that integrates sentiment analysis, macroeconomic indicators, search engine data, and historical prices within a multi-attention deep learning model, masterfully decoding the complex patterns inherent in the data. We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.