Goto

Collaborating Authors

 Wang, Linbing


Large Language Models for Manufacturing

arXiv.org Artificial Intelligence

The rapid advances in Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation. This paper provides a comprehensive exploration of the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing, from product design and development to quality control, supply chain optimization, and talent management. Through extensive evaluations across multiple manufacturing tasks, we demonstrate the remarkable capabilities of state-of-the-art LLMs, such as GPT-4V, in understanding and executing complex instructions, extracting valuable insights from vast amounts of data, and facilitating knowledge sharing. We also delve into the transformative potential of LLMs in reshaping manufacturing education, automating coding processes, enhancing robot control systems, and enabling the creation of immersive, data-rich virtual environments through the industrial metaverse. By highlighting the practical applications and emerging use cases of LLMs in manufacturing, this paper aims to provide a valuable resource for professionals, researchers, and decision-makers seeking to harness the power of these technologies to address real-world challenges, drive operational excellence, and unlock sustainable growth in an increasingly competitive landscape.


Pavement Fatigue Crack Detection and Severity Classification Based on Convolutional Neural Network

arXiv.org Artificial Intelligence

Due to the varying intensity of pavement cracks, the complexity of topological structure, and the noise of texture background, image classification for asphalt pavement cracking has proven to be a challenging problem. Fatigue cracking, also known as alligator cracking, is one of the common distresses of asphalt pavement. It is thus important to detect and monitor the condition of alligator cracking on roadway pavements. Most research in this area has typically focused on pixel-level detection of cracking using limited datasets. A novel deep convolutional neural network that can achieve two objectives is proposed. The first objective of the proposed neural network is to classify presence of fatigue cracking based on pavement surface images. The second objective is to classify the fatigue cracking severity level based on the Distress Identification Manual (DIM) standard. In this paper, a databank of 4484 high-resolution pavement surface images is established in which images are taken locally in the Town of Blacksburg, Virginia, USA. In the data pre-preparation, over 4000 images are labeled into 4 categories manually according to DIM standards. A four-layer convolutional neural network model is then built to achieve the goal of classification of images by pavement crack severity category. The trained model reached the highest accuracy among all existing methods. After only 30 epochs of training, the model achieved a crack existence classification accuracy of 96.23% and a severity level classification accuracy of 96.74%. After 20 epochs of training, the model achieved a pavement marking presence classification accuracy of 97.64%.