Goto

Collaborating Authors

 Wang, Lina


ROSS:RObust decentralized Stochastic learning based on Shapley values

arXiv.org Artificial Intelligence

In the paradigm of decentralized learning, a group of agents collaborate to learn a global model using a distributed dataset without a central server; nevertheless, it is severely challenged by the heterogeneity of the data distribution across the agents. For example, the data may be distributed non-independently and identically, and even be noised or poisoned. To address these data challenges, we propose ROSS, a novel robust decentralized stochastic learning algorithm based on Shapley values, in this paper. Specifically, in each round, each agent aggregates the cross-gradient information from its neighbors, i.e., the derivatives of its local model with respect to the datasets of its neighbors, to update its local model in a momentum like manner, while we innovate in weighting the derivatives according to their contributions measured by Shapley values. We perform solid theoretical analysis to reveal the linear convergence speedup of our ROSS algorithm. We also verify the efficacy of our algorithm through extensive experiments on public datasets. Our results demonstrate that, in face of the above variety of data challenges, our ROSS algorithm have oblivious advantages over existing state-of-the-art proposals in terms of both convergence and prediction accuracy.


KGPA: Robustness Evaluation for Large Language Models via Cross-Domain Knowledge Graphs

arXiv.org Artificial Intelligence

Existing frameworks for assessing robustness of large language models (LLMs) overly depend on specific benchmarks, increasing costs and failing to evaluate performance of LLMs in professional domains due to dataset limitations. This paper proposes a framework that systematically evaluates the robustness of LLMs under adversarial attack scenarios by leveraging knowledge graphs (KGs). Our framework generates original prompts from the triplets of knowledge graphs and creates adversarial prompts by poisoning, assessing the robustness of LLMs through the results of these adversarial attacks. We systematically evaluate the effectiveness of this framework and its modules. Experiments show that adversarial robustness of the ChatGPT family ranks as GPT-4-turbo > GPT-4o > GPT-3.5-turbo, and the robustness of large language models is influenced by the professional domains in which they operate.


Collaborative Learning in General Graphs with Limited Memorization: Complexity, Learnability, and Reliability

arXiv.org Artificial Intelligence

We consider a K-armed bandit problem in general graphs where agents are arbitrarily connected and each of them has limited memorizing capabilities and communication bandwidth. The goal is to let each of the agents eventually learn the best arm. It is assumed in these studies that the communication graph should be complete or well-structured, whereas such an assumption is not always valid in practice. Furthermore, limited memorization and communication bandwidth also restrict the collaborations of the agents, since the agents memorize and communicate very few experiences. Additionally, an agent may be corrupted to share falsified experiences to its peers, while the resource limit in terms of memorization and communication may considerably restrict the reliability of the learning process. To address the above issues, we propose a three-staged collaborative learning algorithm. In each step, the agents share their latest experiences with each other through light-weight random walks in a general communication graph, and then make decisions on which arms to pull according to the recommendations received from their peers. The agents finally update their adoptions (i.e., preferences to the arms) based on the reward obtained by pulling the arms. Our theoretical analysis shows that, when there are a sufficient number of agents participating in the collaborative learning process, all the agents eventually learn the best arm with high probability, even with limited memorizing capabilities and light-weight communications. We also reveal in our theoretical analysis the upper bound on the number of corrupted agents our algorithm can tolerate. The efficacy of our proposed three-staged collaborative learning algorithm is finally verified by extensive experiments on both synthetic and real datasets.


Hiding Data in Colors: Secure and Lossless Deep Image Steganography via Conditional Invertible Neural Networks

arXiv.org Artificial Intelligence

Deep image steganography is a data hiding technology that conceal data in digital images via deep neural networks. However, existing deep image steganography methods only consider the visual similarity of container images to host images, and neglect the statistical security (stealthiness) of container images. Besides, they usually hides data limited to image type and thus relax the constraint of lossless extraction. In this paper, we address the above issues in a unified manner, and propose deep image steganography that can embed data with arbitrary types into images for secure data hiding and lossless data revealing. First, we formulate the data hiding as an image colorization problem, in which the data is binarized and further mapped into the color information for a gray-scale host image. Second, we design a conditional invertible neural network which uses gray-scale image as prior to guide the color generation and perform data hiding in a secure way. Finally, to achieve lossless data revealing, we present a multi-stage training scheme to manage the data loss due to rounding errors between hiding and revealing processes. Extensive experiments demonstrate that the proposed method can perform secure data hiding by generating realism color images and successfully resisting the detection of steganalysis. Moreover, we can achieve 100% revealing accuracy in different scenarios, indicating the practical utility of our steganography in the real-world.


Using contrastive learning to improve the performance of steganalysis schemes

arXiv.org Artificial Intelligence

To improve the detection accuracy and generalization of steganalysis, this paper proposes the Steganalysis Contrastive Framework (SCF) based on contrastive learning. The SCF improves the feature representation of steganalysis by maximizing the distance between features of samples of different categories and minimizing the distance between features of samples of the same category. To decrease the computing complexity of the contrastive loss in supervised learning, we design a novel Steganalysis Contrastive Loss (StegCL) based on the equivalence and transitivity of similarity. The StegCL eliminates the redundant computing in the existing contrastive loss. The experimental results show that the SCF improves the generalization and detection accuracy of existing steganalysis DNNs, and the maximum promotion is 2% and 3% respectively. Without decreasing the detection accuracy, the training time of using the StegCL is 10% of that of using the contrastive loss in supervised learning.


Improving adversarial robustness of deep neural networks by using semantic information

arXiv.org Machine Learning

The vulnerability of deep neural networks (DNNs) to adversarial attack, which is an attack that can mislead state-of-the-art classifiers into making an incorrect classification with high confidence by deliberately perturbing the original inputs, raises concerns about the robustness of DNNs to such attacks. Adversarial training, which is the main heuristic method for improving adversarial robustness and the first line of defense against adversarial attacks, requires many sample-by-sample calculations to increase training size and is usually insufficiently strong for an entire network. This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class. From this perspective, we propose a method to generate a single but image-agnostic adversarial perturbation that carries the semantic information implying the directions to the fragile parts on the decision boundary and causes inputs to be misclassified as a specified target. We call the adversarial training based on such perturbations "region adversarial training" (RAT), which resembles classical adversarial training but is distinguished in that it reinforces the semantic information missing in the relevant regions. Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data; moreover, it can defend against FGSM adversarial attacks that have a completely different pattern from the model seen during retraining.