Wang, Libo
Dynamic Chain-of-Thought: Towards Adaptive Deep Reasoning
Wang, Libo
To reduce the cost and consumption of computing resources caused by computational redundancy and delayed reward assignment in long CoT, this research proposes the dynamic chain-of-thought (D-CoT) with adaptive reasoning time and steps. The researcher used simulation experiment to simulate the integration of D-CoT through Python 3.13 IDLE combined with a Python simulator based on GPTs. At the same time, the researcher used DeepSeek R1 as a control group to test and compare the performance of the D-CoT simulator in processing MIT OpenCourseWare's linear algebra exam questions. Experimental results show that D-CoT is better than DeepSeek R1 based on long CoT in three indicators: reasoning time, CoT length (reasoning steps) and token count, which achieves a significant reduction in computing resource consumption. In addition, this research has potential value in deep reasoning optimization that is used as a reference for future dynamic deep reasoning frameworks.
Wormhole Memory: A Rubik's Cube for Cross-Dialogue Retrieval
Wang, Libo
In view of the gap in the current large language model in sharing memory across dialogues, this research proposes a wormhole memory module (WMM) to realize memory as a Rubik's cube that can be arbitrarily retrieved between different dialogues. Through simulation experiments, the researcher built an experimental framework based on the Python environment and used setting memory barriers to simulate the current situation where memories between LLMs dialogues are difficult to share. The CoQA development data set was imported into the experiment, and the feasibility of its cross-dialogue memory retrieval function was verified for WMM's nonlinear indexing and dynamic retrieval, and a comparative analysis was conducted with the capabilities of Titans and MemGPT memory modules. Experimental results show that WMM demonstrated the ability to retrieve memory across dialogues and the stability of quantitative indicators in eight experiments. It contributes new technical approaches to the optimization of memory management of LLMs and provides experience for the practical application in the future.
Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in Humanoid Robots for Multimodal Understanding
Wang, Libo
To improve the cognitive autonomy of humanoid robots, this research proposes a multi-scenario reasoning architecture to solve the technical shortcomings of multi-modal understanding in this field. It draws on simulation based experimental design that adopts multi-modal synthesis (visual, auditory, tactile) and builds a simulator "Maha" to perform the experiment. The findings demonstrate the feasibility of this architecture in multimodal data. It provides reference experience for the exploration of cross-modal interaction strategies for humanoid robots in dynamic environments. In addition, multi-scenario reasoning simulates the high-level reasoning mechanism of the human brain to humanoid robots at the cognitive level. This new concept promotes cross-scenario practical task transfer and semantic-driven action planning. It heralds the future development of self-learning and autonomous behavior of humanoid robots in changing scenarios.
Reducing Reasoning Costs -- The Path of Optimization for Chain of Thought via Sparse Attention Mechanism
Wang, Libo
In order to address the chain of thought in the large language model inference cost surge, this research proposes to use a sparse attention mechanism that only focuses on a few relevant tokens. The researcher constructed a new attention mechanism and used GiantRabbit trained with custom GPTs as an experimental tool. The experiment tested and compared the reasoning time, correctness score and chain of thought length of this model and o1 Preview in solving the linear algebra test questions of MIT OpenCourseWare. The results show that GiantRabbit's reasoning time and chain of thought length are significantly lower than o1 Preview. It verifies the feasibility of sparse attention mechanism for optimizing chain of thought reasoning.
"Moralized" Multi-Step Jailbreak Prompts: Black-Box Testing of Guardrails in Large Language Models for Verbal Attacks
Wang, Libo
As the application of large language models continues to expand in various fields, it poses higher challenges to the effectiveness of identifying harmful content generation and guardrail mechanisms. This research aims to evaluate the guardrail effectiveness of GPT-4o, Grok-2 Beta, Llama 3.1 (405B), Gemini 1.5, and Claude 3.5 Sonnet through black-box testing of seemingly ethical multi-step jailbreak prompts. It conducts ethical attacks by designing an identical multi-step prompts that simulates the scenario of "corporate middle managers competing for promotions." The data results show that the guardrails of the above-mentioned LLMs were bypassed and the content of verbal attacks was generated. Claude 3.5 Sonnet's resistance to multi-step jailbreak prompts is more obvious.
Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention
Wang, Libo
To address the sycophancy problem caused by reinforcement learning from human feedback in large language models, this research applies synthetic data intervention technology to the decoder-only transformer architecture. Based on the research gaps in the existing literature, the researcher designed an experimental process to reduce the tendency of models to cater by generating diversified data, and used GPT4o as an experimental tool for verification. The experiment used 100 true and false questions, and compared the performance of the model trained with synthetic data intervention and the original untrained model on multiple indicators. The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate and has significant effectiveness in reducing sycophancy phenomena.