Plotting

 Wang, Li


Text Anchor Based Metric Learning for Small-footprint Keyword Spotting

arXiv.org Artificial Intelligence

Keyword Spotting (KWS) remains challenging to achieve the trade-off between small footprint and high accuracy. Recently proposed metric learning approaches improved the generalizability of models for the KWS task, and 1D-CNN based KWS models have achieved the state-of-the-arts (SOTA) in terms of model size. However, for metric learning, due to data limitations, the speech anchor is highly susceptible to the acoustic environment and speakers. Also, we note that the 1D-CNN models have limited capability to capture long-term temporal acoustic features. To address the above problems, we propose to utilize text anchors to improve the stability of anchors. Furthermore, a new type of model (LG-Net) is exquisitely designed to promote long-short term acoustic feature modeling based on 1D-CNN and self-attention. Experiments are conducted on Google Speech Commands Dataset version 1 (GSCDv1) and 2 (GSCDv2). The results demonstrate that the proposed text anchor based metric learning method shows consistent improvements over speech anchor on representative CNN-based models. Moreover, our LG-Net model achieves SOTA accuracy of 97.67% and 96.79% on two datasets, respectively. It is encouraged to see that our lighter LG-Net with only 74k parameters obtains 96.82% KWS accuracy on the GSCDv1 and 95.77% KWS accuracy on the GSCDv2.


AGSFCOS: Based on attention mechanism and Scale-Equalizing pyramid network of object detection

arXiv.org Artificial Intelligence

Recently, the anchor-free object detection model has shown great potential for accuracy and speed to exceed anchor-based object detection. Therefore, two issues are mainly studied in this article: (1) How to let the backbone network in the anchor-free object detection model learn feature extraction? (2) How to make better use of the feature pyramid network? In order to solve the above problems, Experiments show that our model has a certain improvement in accuracy compared with the current popular detection models on the COCO dataset, the designed attention mechanism module can capture contextual information well, improve detection accuracy, and use sepc network to help balance abstract and detailed information, and reduce the problem of semantic gap in the feature pyramid network. Whether it is anchor-based network model YOLOv3, Faster RCNN, or anchor-free network model Foveabox, FSAF, FCOS. Our optimal model can get 39.5% COCO AP under the background of ResNet50.


Improving Federated Relational Data Modeling via Basis Alignment and Weight Penalty

arXiv.org Artificial Intelligence

Federated learning (FL) has attracted increasing attention in recent years. As a privacy-preserving collaborative learning paradigm, it enables a broader range of applications, especially for computer vision and natural language processing tasks. However, to date, there is limited research of federated learning on relational data, namely Knowledge Graph (KG). In this work, we present a modified version of the graph neural network algorithm that performs federated modeling over KGs across different participants. Specifically, to tackle the inherent data heterogeneity issue and inefficiency in algorithm convergence, we propose a novel optimization algorithm, named FedAlign, with 1) optimal transportation (OT) for on-client personalization and 2) weight constraint to speed up the convergence. Extensive experiments have been conducted on several widely used datasets. Empirical results show that our proposed method outperforms the state-of-the-art FL methods, such as FedAVG and FedProx, with better convergence.


Uncorrelated Semi-paired Subspace Learning

arXiv.org Machine Learning

Multi-view datasets are increasingly collected in many real-world applications, and we have seen better learning performance by existing multi-view learning methods than by conventional single-view learning methods applied to each view individually. But, most of these multi-view learning methods are built on the assumption that at each instance no view is missing and all data points from all views must be perfectly paired. Hence they cannot handle unpaired data but ignore them completely from their learning process. However, unpaired data can be more abundant in reality than paired ones and simply ignoring all unpaired data incur tremendous waste in resources. In this paper, we focus on learning uncorrelated features by semi-paired subspace learning, motivated by many existing works that show great successes of learning uncorrelated features. Specifically, we propose a generalized uncorrelated multi-view subspace learning framework, which can naturally integrate many proven learning criteria on the semi-paired data. To showcase the flexibility of the framework, we instantiate five new semi-paired models for both unsupervised and semi-supervised learning. We also design a successive alternating approximation (SAA) method to solve the resulting optimization problem and the method can be combined with the powerful Krylov subspace projection technique if needed. Extensive experimental results on multi-view feature extraction and multi-modality classification show that our proposed models perform competitively to or better than the baselines.


Orthogonal Multi-view Analysis by Successive Approximations via Eigenvectors

arXiv.org Machine Learning

We propose a unified framework for multi-view subspace learning to learn individual orthogonal projections for all views. The framework integrates the correlations within multiple views, supervised discriminant capacity, and distance preservation in a concise and compact way. It not only includes several existing models as special cases, but also inspires new novel models. To demonstrate its versatility to handle different learning scenarios, we showcase three new multi-view discriminant analysis models and two new multi-view multi-label classification ones under this framework. An efficient numerical method based on successive approximations via eigenvectors is presented to solve the associated optimization problem. The method is built upon an iterative Krylov subspace method which can easily scale up for high-dimensional datasets. Extensive experiments are conducted on various real-world datasets for multi-view discriminant analysis and multi-view multi-label classification. The experimental results demonstrate that the proposed models are consistently competitive to and often better than the compared methods that do not learn orthogonal projections.


Privacy-preserving Transfer Learning via Secure Maximum Mean Discrepancy

arXiv.org Machine Learning

The success of machine learning algorithms often relies on a large amount of high-quality data to train well-performed models. However, data is a valuable resource and are always held by different parties in reality. An effective solution to such a "data isolation" problem is to employ federated learning, which allows multiple parties to collaboratively train a model. In this paper, we propose a Secure version of the widely used Maximum Mean Discrepancy (SMMD) based on homomorphic encryption to enable effective knowledge transfer under the data federation setting without compromising the data privacy. The proposed SMMD is able to avoid the potential information leakage in transfer learning when aligning the source and target data distribution. As a result, both the source domain and target domain can fully utilize their data to build Figure 1: Illustration of secure transfer learning more scalable models. Experimental results demonstrate that our proposed SMMD is secure and effective. Facebook's massive user data leakage event caused strong repercussions.


Multi-view Orthonormalized Partial Least Squares: Regularizations and Deep Extensions

arXiv.org Machine Learning

We establish a family of subspace-based learning method for multi-view learning using the least squares as the fundamental basis. Specifically, we investigate orthonormalized partial least squares (OPLS) and study its important properties for both multivariate regression and classification. Building on the least squares reformulation of OPLS, we propose a unified multi-view learning framework to learn a classifier over a common latent space shared by all views. The regularization technique is further leveraged to unleash the power of the proposed framework by providing three generic types of regularizers on its inherent ingredients including model parameters, decision values and latent projected points. We instantiate a set of regularizers in terms of various priors. The proposed framework with proper choices of regularizers not only can recast existing methods, but also inspire new models. To further improve the performance of the proposed framework on complex real problems, we propose to learn nonlinear transformations parameterized by deep networks. Extensive experiments are conducted to compare various methods on nine data sets with different numbers of views in terms of both feature extraction and cross-modal retrieval.


Deep Tensor CCA for Multi-view Learning

arXiv.org Machine Learning

We present Deep Tensor Canonical Correlation Analysis (DTCCA), a method to learn complex nonlinear transformations of multiple views (more than two) of data such that the resulting representations are linearly correlated in high order. The high-order correlation of given multiple views is modeled by covariance tensor, which is different from most CCA formulations relying solely on the pairwise correlations. Parameters of transformations of each view are jointly learned by maximizing the high-order canonical correlation. To solve the resulting problem, we reformulate it as the best sum of rank-1 approximation, which can be efficiently solved by existing tensor decomposition method. DTCCA is a nonlinear extension of tensor CCA (TCCA) via deep networks. The transformations of DTCCA are parametric functions, which are very different from implicit mapping in the form of kernel function. Comparing with kernel TCCA, DTCCA not only can deal with arbitrary dimensions of the input data, but also does not need to maintain the training data for computing representations of any given data point. Hence, DTCCA as a unified model can efficiently overcome the scalable issue of TCCA for either high-dimensional multi-view data or a large amount of views, and it also naturally extends TCCA for learning nonlinear representation. Extensive experiments on three multi-view data sets demonstrate the effectiveness of the proposed method.


Privacy-Preserving Graph Neural Network for Node Classification

arXiv.org Machine Learning

Recently, Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data, consisting of node features and the adjacent information between different nodes. High-performance GNN models always depend on both rich features and complete edge information in graph. However, such information could possibly be isolated by different data holders in practice, which is the so-called data isolation problem. To solve this problem, in this paper, we propose a Privacy-Preserving GNN (PPGNN) learning paradigm for node classification task, which can be generalized to existing GNN models. Specifically, we split the computation graph into two parts. We leave the private data (i.e., features, edges, and labels) related computations on data holders, and delegate the rest of computations to a semi-honest server. We conduct experiments on three benchmarks and the results demonstrate that PPGNN significantly outperforms the GNN models trained on the isolated data and has comparable performance with the traditional GNN trained on the mixed plaintext data.


A Hybrid-Domain Framework for Secure Gradient Tree Boosting

arXiv.org Machine Learning

Gradient tree boosting (e.g. XGB) is one of the most widely usedmachine learning models in practice. How to build a secure XGB inface of data isolation problem becomes a hot research topic. However, existing works tend to leak intermediate information and thusraise potential privacy risk. In this paper, we propose a novel framework for two parties to build secure XGB with vertically partitioneddata. Specifically, we associate Homomorphic Encryption (HE) domain with Secret Sharing (SS) domain by providing the two-waytransformation primitives. The framework generally promotes theefficiency for privacy preserving machine learning and offers theflexibility to implement other machine learning models. Then weelaborate two secure XGB training algorithms as well as a corresponding prediction algorithm under the hybrid security domains.Next, we compare our proposed two training algorithms throughboth complexity analysis and experiments. Finally, we verify themodel performance on benchmark dataset and further apply ourwork to a real-world scenario.