Wang, Le
Versatile Multimodal Controls for Whole-Body Talking Human Animation
Qin, Zheng, Zheng, Ruobing, Wang, Yabing, Li, Tianqi, Zhu, Zixin, Yang, Minghui, Yang, Ming, Wang, Le
Human animation from a single reference image shall be flexible to synthesize whole-body motion for either a headshot or whole-body portrait, where the motions are readily controlled by audio signal and text prompts. This is hard for most existing methods as they only support producing pre-specified head or half-body motion aligned with audio inputs. In this paper, we propose a versatile human animation method, i.e., VersaAnimator, which generates whole-body talking human from arbitrary portrait images, not only driven by audio signal but also flexibly controlled by text prompts. Specifically, we design a text-controlled, audio-driven motion generator that produces whole-body motion representations in 3D synchronized with audio inputs while following textual motion descriptions. To promote natural smooth motion, we propose a code-pose translation module to link VAE codebooks with 2D DWposes extracted from template videos. Moreover, we introduce a multi-modal video diffusion that generates photorealistic human animation from a reference image according to both audio inputs and whole-body motion representations. Extensive experiments show that VersaAnimator outperforms existing methods in visual quality, identity preservation, and audio-lip synchronization.
Referencing Where to Focus: Improving VisualGrounding with Referential Query
Wang, Yabing, Tian, Zhuotao, Guo, Qingpei, Qin, Zheng, Zhou, Sanping, Yang, Ming, Wang, Le
Visual Grounding aims to localize the referring object in an image given a natural language expression. Recent advancements in DETR-based visual grounding methods have attracted considerable attention, as they directly predict the coordinates of the target object without relying on additional efforts, such as pre-generated proposal candidates or pre-defined anchor boxes. However, existing research primarily focuses on designing stronger multi-modal decoder, which typically generates learnable queries by random initialization or by using linguistic embeddings. This vanilla query generation approach inevitably increases the learning difficulty for the model, as it does not involve any target-related information at the beginning of decoding. Furthermore, they only use the deepest image feature during the query learning process, overlooking the importance of features from other levels. To address these issues, we propose a novel approach, called RefFormer. It consists of the query adaption module that can be seamlessly integrated into CLIP and generate the referential query to provide the prior context for decoder, along with a task-specific decoder. By incorporating the referential query into the decoder, we can effectively mitigate the learning difficulty of the decoder, and accurately concentrate on the target object. Additionally, our proposed query adaption module can also act as an adapter, preserving the rich knowledge within CLIP without the need to tune the parameters of the backbone network. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method, outperforming state-of-the-art approaches on five visual grounding benchmarks.
Revealing the Evolution of Order in Materials Microstructures Using Multi-Modal Computer Vision
Ter-Petrosyan, Arman, Holden, Michael, Bilbrey, Jenna A., Akers, Sarah, Doty, Christina, Yano, Kayla H., Wang, Le, Paudel, Rajendra, Lang, Eric, Hattar, Khalid, Comes, Ryan B., Du, Yingge, Matthews, Bethany E., Spurgeon, Steven R.
The development of high-performance materials for microelectronics, energy storage, and extreme environments depends on our ability to describe and direct property-defining microstructural order. Our present understanding is typically derived from laborious manual analysis of imaging and spectroscopy data, which is difficult to scale, challenging to reproduce, and lacks the ability to reveal latent associations needed for mechanistic models. Here, we demonstrate a multi-modal machine learning (ML) approach to describe order from electron microscopy analysis of the complex oxide La$_{1-x}$Sr$_x$FeO$_3$. We construct a hybrid pipeline based on fully and semi-supervised classification, allowing us to evaluate both the characteristics of each data modality and the value each modality adds to the ensemble. We observe distinct differences in the performance of uni- and multi-modal models, from which we draw general lessons in describing crystal order using computer vision.
Multimodal LLM Enhanced Cross-lingual Cross-modal Retrieval
Wang, Yabing, Wang, Le, Zhou, Qiang, Wang, Zhibin, Li, Hao, Hua, Gang, Tang, Wei
Cross-lingual cross-modal retrieval (CCR) aims to retrieve visually relevant content based on non-English queries, without relying on human-labeled cross-modal data pairs during training. One popular approach involves utilizing machine translation (MT) to create pseudo-parallel data pairs, establishing correspondence between visual and non-English textual data. However, aligning their representations poses challenges due to the significant semantic gap between vision and text, as well as the lower quality of non-English representations caused by pre-trained encoders and data noise. To overcome these challenges, we propose LECCR, a novel solution that incorporates the multi-modal large language model (MLLM) to improve the alignment between visual and non-English representations. Specifically, we first employ MLLM to generate detailed visual content descriptions and aggregate them into multi-view semantic slots that encapsulate different semantics. Then, we take these semantic slots as internal features and leverage them to interact with the visual features. By doing so, we enhance the semantic information within the visual features, narrowing the semantic gap between modalities and generating local visual semantics for subsequent multi-level matching. Additionally, to further enhance the alignment between visual and non-English features, we introduce softened matching under English guidance. This approach provides more comprehensive and reliable inter-modal correspondences between visual and non-English features. Extensive experiments on four CCR benchmarks, \ie Multi30K, MSCOCO, VATEX, and MSR-VTT-CN, demonstrate the effectiveness of our proposed method. Code: \url{https://github.com/LiJiaBei-7/leccr}.
Robust Noisy Label Learning via Two-Stream Sample Distillation
Bai, Sihan, Zhou, Sanping, Qin, Zheng, Wang, Le, Zheng, Nanning
Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts sample selection or label correction to deal with noisy labels during the model training process. In this paper, we design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD), for noisy label learning, which can extract more high-quality samples with clean labels to improve the robustness of network training. Firstly, a novel Parallel Sample Division (PSD) module is designed to generate a certain training set with sufficient reliable positive and negative samples by jointly considering the sample structure in feature space and the human prior in loss space. Secondly, a novel Meta Sample Purification (MSP) module is further designed to mine adequate semi-hard samples from the remaining uncertain training set by learning a strong meta classifier with extra golden data. As a result, more and more high-quality samples will be distilled from the noisy training set to train networks robustly in every iteration. Extensive experiments on four benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and Clothing-1M, show that our method has achieved state-of-the-art results over its competitors.
Recurrent Aligned Network for Generalized Pedestrian Trajectory Prediction
Dong, Yonghao, Wang, Le, Zhou, Sanping, Hua, Gang, Sun, Changyin
Pedestrian trajectory prediction is a crucial component in computer vision and robotics, but remains challenging due to the domain shift problem. Previous studies have tried to tackle this problem by leveraging a portion of the trajectory data from the target domain to adapt the model. However, such domain adaptation methods are impractical in real-world scenarios, as it is infeasible to collect trajectory data from all potential target domains. In this paper, we study a task named generalized pedestrian trajectory prediction, with the aim of generalizing the model to unseen domains without accessing their trajectories. To tackle this task, we introduce a Recurrent Aligned Network~(RAN) to minimize the domain gap through domain alignment. Specifically, we devise a recurrent alignment module to effectively align the trajectory feature spaces at both time-state and time-sequence levels by the recurrent alignment strategy.Furthermore, we introduce a pre-aligned representation module to combine social interactions with the recurrent alignment strategy, which aims to consider social interactions during the alignment process instead of just target trajectories. We extensively evaluate our method and compare it with state-of-the-art methods on three widely used benchmarks. The experimental results demonstrate the superior generalization capability of our method. Our work not only fills the gap in the generalization setting for practical pedestrian trajectory prediction but also sets strong baselines in this field.
Unsupervised segmentation of irradiation$\unicode{x2010}$induced order$\unicode{x2010}$disorder phase transitions in electron microscopy
Ter-Petrosyan, Arman H, Bilbrey, Jenna A, Doty, Christina M, Matthews, Bethany E, Wang, Le, Du, Yingge, Lang, Eric, Hattar, Khalid, Spurgeon, Steven R
We present a method for the unsupervised segmentation of electron microscopy images, which are powerful descriptors of materials and chemical systems. Images are oversegmented into overlapping chips, and similarity graphs are generated from embeddings extracted from a domain$\unicode{x2010}$pretrained convolutional neural network (CNN). The Louvain method for community detection is then applied to perform segmentation. The graph representation provides an intuitive way of presenting the relationship between chips and communities. We demonstrate our method to track irradiation$\unicode{x2010}$induced amorphous fronts in thin films used for catalysis and electronics. This method has potential for "on$\unicode{x2010}$the$\unicode{x2010}$fly" segmentation to guide emerging automated electron microscopes.
Unlimited Neighborhood Interaction for Heterogeneous Trajectory Prediction
Zheng, Fang, Wang, Le, Zhou, Sanping, Tang, Wei, Niu, Zhenxing, Zheng, Nanning, Hua, Gang
Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, involving an uncertain number of agents and non-local areas simultaneously. Besides, they treat heterogeneous traffic agents the same, namely those among agents of different categories, while neglecting people's diverse reaction patterns toward traffic agents in ifferent categories. To address these problems, we propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN), which predicts trajectories of heterogeneous agents in multiple categories. Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area. Meanwhile, a hierarchical graph attention module is proposed to obtain category-to-category interaction and agent-to-agent interaction. Finally, parameters of a Gaussian Mixture Model are estimated for generating the future trajectories. Extensive experimental results on benchmark datasets demonstrate a significant performance improvement of our method over the state-of-the-art methods.
Bimodal Stereo: Joint Shape and Pose Estimation from Color-Depth Image Pair
Zhang, Chi, Liu, Yuehu, Wu, Ying, Zhang, Qilin, Wang, Le
Mutual calibration between color and depth cameras is a challenging topic in multi-modal data registration. In this paper, we are confronted with a "Bimodal Stereo" problem, which aims to solve camera pose from a pair of an uncalibrated color image and a depth map from different views automatically. To address this problem, an iterative Shape-from-Shading (SfS) based framework is proposed to estimate shape and pose simultaneously. In the pipeline, the estimated shape is refined by the shape prior from the given depth map under the estimated pose. Meanwhile, the estimated pose is improved by the registration of estimated shape and shape from given depth map. We also introduce a shading based refinement in the pipeline to address noisy depth map with holes. Extensive experiments showed that through our method, both the depth map, the recovered shape as well as its pose can be desirably refined and recovered.
NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval
Li, Canjia, Sun, Yingfei, He, Ben, Wang, Le, Hui, Kai, Yates, Andrew, Sun, Le, Xu, Jungang
Pseudo-relevance feedback (PRF) is commonly used to boost the performance of traditional information retrieval (IR) models by using top-ranked documents to identify and weight new query terms, thereby reducing the effect of query-document vocabulary mismatches. While neural retrieval models have recently demonstrated strong results for ad-hoc retrieval, combining them with PRF is not straightforward due to incompatibilities between existing PRF approaches and neural architectures. To bridge this gap, we propose an end-to-end neural PRF framework that can be used with existing neural IR models by embedding different neural models as building blocks. Extensive experiments on two standard test collections confirm the effectiveness of the proposed NPRF framework in improving the performance of two state-of-the-art neural IR models.