Goto

Collaborating Authors

 Wang, Keyang


Learning states enhanced knowledge tracing: Simulating the diversity in real-world learning process

arXiv.org Artificial Intelligence

The Knowledge Tracing (KT) task focuses on predicting a learner's future performance based on the historical interactions. The knowledge state plays a key role in learning process. However, considering that the knowledge state is influenced by various learning factors in the interaction process, such as the exercises similarities, responses reliability and the learner's learning state. Previous models still face two major limitations. First, due to the exercises differences caused by various complex reasons and the unreliability of responses caused by guessing behavior, it is hard to locate the historical interaction which is most relevant to the current answered exercise. Second, the learning state is also a key factor to influence the knowledge state, which is always ignored by previous methods. To address these issues, we propose a new method named Learning State Enhanced Knowledge Tracing (LSKT). Firstly, to simulate the potential differences in interactions, inspired by Item Response Theory~(IRT) paradigm, we designed three different embedding methods ranging from coarse-grained to fine-grained views and conduct comparative analysis on them. Secondly, we design a learning state extraction module to capture the changing learning state during the learning process of the learner. In turn, with the help of the extracted learning state, a more detailed knowledge state could be captured. Experimental results on four real-world datasets show that our LSKT method outperforms the current state-of-the-art methods.


Dual-State Personalized Knowledge Tracing with Emotional Incorporation

arXiv.org Artificial Intelligence

Knowledge tracing has been widely used in online learning systems to guide the students' future learning. However, most existing KT models primarily focus on extracting abundant information from the question sets and explore the relationships between them, but ignore the personalized student behavioral information in the learning process. This will limit the model's ability to accurately capture the personalized knowledge states of students and reasonably predict their performances. To alleviate this limitation, we explicitly models the personalized learning process by incorporating the emotions, a representative personalized behavior in the learning process, into KT framework. Specifically, we present a novel Dual-State Personalized Knowledge Tracing with Emotional Incorporation model to achieve this goal: Firstly, we incorporate emotional information into the modeling process of knowledge state, resulting in the Knowledge State Boosting Module. Secondly, we design an Emotional State Tracing Module to monitor students' personalized emotional states, and propose an emotion prediction method based on personalized emotional states. Finally, we apply the predicted emotions to enhance students' response prediction. Furthermore, to extend the generalization capability of our model across different datasets, we design a transferred version of DEKT, named Transfer Learning-based Self-loop model (T-DEKT). Extensive experiments show our method achieves the state-of-the-art performance.


Personalized Forgetting Mechanism with Concept-Driven Knowledge Tracing

arXiv.org Artificial Intelligence

Knowledge Tracing (KT) aims to trace changes in students' knowledge states throughout their entire learning process by analyzing their historical learning data and predicting their future learning performance. Existing forgetting curve theory based knowledge tracing models only consider the general forgetting caused by time intervals, ignoring the individualization of students and the causal relationship of the forgetting process. To address these problems, we propose a Concept-driven Personalized Forgetting knowledge tracing model (CPF) which integrates hierarchical relationships between knowledge concepts and incorporates students' personalized cognitive abilities. First, we integrate the students' personalized capabilities into both the learning and forgetting processes to explicitly distinguish students' individual learning gains and forgetting rates according to their cognitive abilities. Second, we take into account the hierarchical relationships between knowledge points and design a precursor-successor knowledge concept matrix to simulate the causal relationship in the forgetting process, while also integrating the potential impact of forgetting prior knowledge points on subsequent ones. The proposed personalized forgetting mechanism can not only be applied to the learning of specifc knowledge concepts but also the life-long learning process. Extensive experimental results on three public datasets show that our CPF outperforms current forgetting curve theory based methods in predicting student performance, demonstrating CPF can better simulate changes in students' knowledge status through the personalized forgetting mechanism.