Wang, Kaiyuan
Scalable Machine Learning Training Infrastructure for Online Ads Recommendation and Auction Scoring Modeling at Google
Kurian, George, Sardashti, Somayeh, Sims, Ryan, Berger, Felix, Holt, Gary, Li, Yang, Willcock, Jeremiah, Wang, Kaiyuan, Quiroz, Herve, Salem, Abdulrahman, Grady, Julian
Large-scale Ads recommendation and auction scoring models at Google scale demand immense computational resources. While specialized hardware like TPUs have improved linear algebra computations, bottlenecks persist in large-scale systems. This paper proposes solutions for three critical challenges that must be addressed for efficient end-to-end execution in a widely used production infrastructure: (1) Input Generation and Ingestion Pipeline: Efficiently transforming raw features (e.g., "search query") into numerical inputs and streaming them to TPUs; (2) Large Embedding Tables: Optimizing conversion of sparse features into dense floating-point vectors for neural network consumption; (3) Interruptions and Error Handling: Minimizing resource wastage in large-scale shared datacenters. To tackle these challenges, we propose a shared input generation technique to reduce computational load of input generation by amortizing costs across many models. Furthermore, we propose partitioning, pipelining, and RPC (Remote Procedure Call) coalescing software techniques to optimize embedding operations. To maintain efficiency at scale, we describe novel preemption notice and training hold mechanisms that minimize resource wastage, and ensure prompt error resolution. These techniques have demonstrated significant improvement in Google production, achieving a 116% performance boost and an 18% reduction in training costs across representative models.
DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset
Khazatsky, Alexander, Pertsch, Karl, Nair, Suraj, Balakrishna, Ashwin, Dasari, Sudeep, Karamcheti, Siddharth, Nasiriany, Soroush, Srirama, Mohan Kumar, Chen, Lawrence Yunliang, Ellis, Kirsty, Fagan, Peter David, Hejna, Joey, Itkina, Masha, Lepert, Marion, Ma, Yecheng Jason, Miller, Patrick Tree, Wu, Jimmy, Belkhale, Suneel, Dass, Shivin, Ha, Huy, Jain, Arhan, Lee, Abraham, Lee, Youngwoon, Memmel, Marius, Park, Sungjae, Radosavovic, Ilija, Wang, Kaiyuan, Zhan, Albert, Black, Kevin, Chi, Cheng, Hatch, Kyle Beltran, Lin, Shan, Lu, Jingpei, Mercat, Jean, Rehman, Abdul, Sanketi, Pannag R, Sharma, Archit, Simpson, Cody, Vuong, Quan, Walke, Homer Rich, Wulfe, Blake, Xiao, Ted, Yang, Jonathan Heewon, Yavary, Arefeh, Zhao, Tony Z., Agia, Christopher, Baijal, Rohan, Castro, Mateo Guaman, Chen, Daphne, Chen, Qiuyu, Chung, Trinity, Drake, Jaimyn, Foster, Ethan Paul, Gao, Jensen, Herrera, David Antonio, Heo, Minho, Hsu, Kyle, Hu, Jiaheng, Jackson, Donovon, Le, Charlotte, Li, Yunshuang, Lin, Kevin, Lin, Roy, Ma, Zehan, Maddukuri, Abhiram, Mirchandani, Suvir, Morton, Daniel, Nguyen, Tony, O'Neill, Abigail, Scalise, Rosario, Seale, Derick, Son, Victor, Tian, Stephen, Tran, Emi, Wang, Andrew E., Wu, Yilin, Xie, Annie, Yang, Jingyun, Yin, Patrick, Zhang, Yunchu, Bastani, Osbert, Berseth, Glen, Bohg, Jeannette, Goldberg, Ken, Gupta, Abhinav, Gupta, Abhishek, Jayaraman, Dinesh, Lim, Joseph J, Malik, Jitendra, Martín-Martín, Roberto, Ramamoorthy, Subramanian, Sadigh, Dorsa, Song, Shuran, Wu, Jiajun, Yip, Michael C., Zhu, Yuke, Kollar, Thomas, Levine, Sergey, Finn, Chelsea
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
FinLLMs: A Framework for Financial Reasoning Dataset Generation with Large Language Models
Yuan, Ziqiang, Wang, Kaiyuan, Zhu, Shoutai, Yuan, Ye, Zhou, Jingya, Zhu, Yanlin, Wei, Wenqi
Large Language models (LLMs) usually rely on extensive training datasets. In the financial domain, creating numerical reasoning datasets that include a mix of tables and long text often involves substantial manual annotation expenses. To address the limited data resources and reduce the annotation cost, we introduce FinLLMs, a method for generating financial question-answering data based on common financial formulas using Large Language Models. First, we compile a list of common financial formulas and construct a graph based on the variables these formulas employ. We then augment the formula set by combining those that share identical variables as new elements. Specifically, we explore formulas obtained by manual annotation and merge those formulas with shared variables by traversing the constructed graph. Finally, utilizing GPT-3.5, we generate financial question-answering data that encompasses both tabular information and long textual content, building on the collected formula set. Our experiments demonstrate that synthetic data generated by FinLLMs effectively enhances the performance of several large-scale numerical reasoning models in the financial domain, outperforming two established benchmark financial question-answering datasets.
Symbolic Discovery of Optimization Algorithms
Chen, Xiangning, Liang, Chen, Huang, Da, Real, Esteban, Wang, Kaiyuan, Liu, Yao, Pham, Hieu, Dong, Xuanyi, Luong, Thang, Hsieh, Cho-Jui, Lu, Yifeng, Le, Quoc V.
We present a method to formulate algorithm discovery as program search, and apply it to discover optimization algorithms for deep neural network training. We leverage efficient search techniques to explore an infinite and sparse program space. To bridge the large generalization gap between proxy and target tasks, we also introduce program selection and simplification strategies. Our method discovers a simple and effective optimization algorithm, $\textbf{Lion}$ ($\textit{Evo$\textbf{L}$ved S$\textbf{i}$gn M$\textbf{o}$me$\textbf{n}$tum}$). It is more memory-efficient than Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same magnitude for each parameter calculated through the sign operation. We compare Lion with widely used optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training compute on JFT. On vision-language contrastive learning, we achieve 88.3% $\textit{zero-shot}$ and 91.1% $\textit{fine-tuning}$ accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios where its improvements are small or not statistically significant. Lion is also successfully deployed in production systems such as Google search ads CTR model.
Mo\"ET: Interpretable and Verifiable Reinforcement Learning via Mixture of Expert Trees
Vasic, Marko, Petrovic, Andrija, Wang, Kaiyuan, Nikolic, Mladen, Singh, Rishabh, Khurshid, Sarfraz
Deep Reinforcement Learning (DRL) has led to many recent breakthroughs on complex control tasks, such as defeating the best human player in the game of Go. However, decisions made by the DRL agent are not explainable, hindering its applicability in safety-critical settings. Viper, a recently proposed technique, constructs a decision tree policy by mimicking the DRL agent. Decision trees are interpretable as each action made can be traced back to the decision rule path that lead to it. However, one global decision tree approximating the DRL policy has significant limitations with respect to the geometry of decision boundaries. We propose Mo\"ET, a more expressive, yet still interpretable model based on Mixture of Experts, consisting of a gating function that partitions the state space, and multiple decision tree experts that specialize on different partitions. We propose a training procedure to support non-differentiable decision tree experts and integrate it into imitation learning procedure of Viper. We evaluate our algorithm on four OpenAI gym environments, and show that the policy constructed in such a way is more performant and better mimics the DRL agent by lowering mispredictions and increasing the reward. We also show that Mo\"ET policies are amenable for verification using off-the-shelf automated theorem provers such as Z3.