Wang, Junle
Dance with You: The Diversity Controllable Dancer Generation via Diffusion Models
Yao, Siyue, Sun, Mingjie, Li, Bingliang, Yang, Fengyu, Wang, Junle, Zhang, Ruimao
Recently, digital humans for interpersonal interaction in virtual environments have gained significant attention. In this paper, we introduce a novel multi-dancer synthesis task called partner dancer generation, which involves synthesizing virtual human dancers capable of performing dance with users. The task aims to control the pose diversity between the lead dancer and the partner dancer. The core of this task is to ensure the controllable diversity of the generated partner dancer while maintaining temporal coordination with the lead dancer. This scenario varies from earlier research in generating dance motions driven by music, as our emphasis is on automatically designing partner dancer postures according to pre-defined diversity, the pose of lead dancer, as well as the accompanying tunes. To achieve this objective, we propose a three-stage framework called Dance-with-You (DanY). Initially, we employ a 3D Pose Collection stage to collect a wide range of basic dance poses as references for motion generation. Then, we introduce a hyper-parameter that coordinates the similarity between dancers by masking poses to prevent the generation of sequences that are over-diverse or consistent. To avoid the rigidity of movements, we design a Dance Pre-generated stage to pre-generate these masked poses instead of filling them with zeros. After that, a Dance Motion Transfer stage is adopted with leader sequences and music, in which a multi-conditional sampling formula is rewritten to transfer the pre-generated poses into a sequence with a partner style. In practice, to address the lack of multi-person datasets, we introduce AIST-M, a new dataset for partner dancer generation, which is publicly availiable. Comprehensive evaluations on our AIST-M dataset demonstrate that the proposed DanY can synthesize satisfactory partner dancer results with controllable diversity.
Considering user agreement in learning to predict the aesthetic quality
Ling, Suiyi, Pastor, Andreas, Wang, Junle, Callet, Patrick Le
How to robustly rank the aesthetic quality of given images has been a long-standing ill-posed topic. Such challenge stems mainly from the diverse subjective opinions of different observers about the varied types of content. There is a growing interest in estimating the user agreement by considering the standard deviation of the scores, instead of only predicting the mean aesthetic opinion score. Nevertheless, when comparing a pair of contents, few studies consider how confident are we regarding the difference in the aesthetic scores. In this paper, we thus propose (1) a re-adapted multi-task attention network to predict both the mean opinion score and the standard deviation in an end-to-end manner; (2) a brand-new confidence interval ranking loss that encourages the model to focus on image-pairs that are less certain about the difference of their aesthetic scores. With such loss, the model is encouraged to learn the uncertainty of the content that is relevant to the diversity of observers' opinions, i.e., user disagreement. Extensive experiments have demonstrated that the proposed multi-task aesthetic model achieves state-of-the-art performance on two different types of aesthetic datasets, i.e., AVA and TMGA.
Multi-Modal Aesthetic Assessment for MObile Gaming Image
Lei, Zhenyu, Xie, Yejing, Ling, Suiyi, Pastor, Andreas, Wang, Junle, Callet, Patrick Le
With the proliferation of various gaming technology, services, game styles, and platforms, multi-dimensional aesthetic assessment of the gaming contents is becoming more and more important for the gaming industry. Depending on the diverse needs of diversified game players, game designers, graphical developers, etc. in particular conditions, multi-modal aesthetic assessment is required to consider different aesthetic dimensions/perspectives. Since there are different underlying relationships between different aesthetic dimensions, e.g., between the `Colorfulness' and `Color Harmony', it could be advantageous to leverage effective information attached in multiple relevant dimensions. To this end, we solve this problem via multi-task learning. Our inclination is to seek and learn the correlations between different aesthetic relevant dimensions to further boost the generalization performance in predicting all the aesthetic dimensions. Therefore, the `bottleneck' of obtaining good predictions with limited labeled data for one individual dimension could be unplugged by harnessing complementary sources of other dimensions, i.e., augment the training data indirectly by sharing training information across dimensions. According to experimental results, the proposed model outperforms state-of-the-art aesthetic metrics significantly in predicting four gaming aesthetic dimensions.
Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation
LI, JING, Mantiuk, Rafal, Wang, Junle, Ling, Suiyi, Callet, Patrick Le
In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labeling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.
Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation
LI, JING, Mantiuk, Rafal, Wang, Junle, Ling, Suiyi, Callet, Patrick Le
In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labelling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.
Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation
LI, JING, Mantiuk, Rafal, Wang, Junle, Ling, Suiyi, Callet, Patrick Le
In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labeling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.
Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation
Li, Jing, Mantiuk, Rafal K., Wang, Junle, Ling, Suiyi, Callet, Patrick Le
In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labelling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods.