Goto

Collaborating Authors

 Wang, Junjie


Adversarial Testing for Visual Grounding via Image-Aware Property Reduction

arXiv.org Artificial Intelligence

Due to the advantages of fusing information from various modalities, multimodal learning is gaining increasing attention. Being a fundamental task of multimodal learning, Visual Grounding (VG), aims to locate objects in images through natural language expressions. Ensuring the quality of VG models presents significant challenges due to the complex nature of the task. In the black box scenario, existing adversarial testing techniques often fail to fully exploit the potential of both modalities of information. They typically apply perturbations based solely on either the image or text information, disregarding the crucial correlation between the two modalities, which would lead to failures in test oracles or an inability to effectively challenge VG models. To this end, we propose PEELING, a text perturbation approach via image-aware property reduction for adversarial testing of the VG model. The core idea is to reduce the property-related information in the original expression meanwhile ensuring the reduced expression can still uniquely describe the original object in the image. To achieve this, PEELING first conducts the object and properties extraction and recombination to generate candidate property reduction expressions. It then selects the satisfied expressions that accurately describe the original object while ensuring no other objects in the image fulfill the expression, through querying the image with a visual understanding technique. We evaluate PEELING on the state-of-the-art VG model, i.e. OFA-VG, involving three commonly used datasets. Results show that the adversarial tests generated by PEELING achieves 21.4% in MultiModal Impact score (MMI), and outperforms state-of-the-art baselines for images and texts by 8.2%--15.1%.


Evaluating Decision Optimality of Autonomous Driving via Metamorphic Testing

arXiv.org Artificial Intelligence

Autonomous Driving System (ADS) testing is crucial in ADS development, with the current primary focus being on safety. However, the evaluation of non-safety-critical performance, particularly the ADS's ability to make optimal decisions and produce optimal paths for autonomous vehicles (AVs), is equally vital to ensure the intelligence and reduce risks of AVs. Currently, there is little work dedicated to assessing ADSs' optimal decision-making performance due to the lack of corresponding oracles and the difficulty in generating scenarios with non-optimal decisions. In this paper, we focus on evaluating the decision-making quality of an ADS and propose the first method for detecting non-optimal decision scenarios (NoDSs), where the ADS does not compute optimal paths for AVs. Firstly, to deal with the oracle problem, we propose a novel metamorphic relation (MR) aimed at exposing violations of optimal decisions. The MR identifies the property that the ADS should retain optimal decisions when the optimal path remains unaffected by non-invasive changes. Subsequently, we develop a new framework, Decictor, designed to generate NoDSs efficiently. Decictor comprises three main components: Non-invasive Mutation, MR Check, and Feedback. The Non-invasive Mutation ensures that the original optimal path in the mutated scenarios is not affected, while the MR Check is responsible for determining whether non-optimal decisions are made. To enhance the effectiveness of identifying NoDSs, we design a feedback metric that combines both spatial and temporal aspects of the AV's movement. We evaluate Decictor on Baidu Apollo, an open-source and production-grade ADS. The experimental results validate the effectiveness of Decictor in detecting non-optimal decisions of ADSs. Our work provides valuable and original insights into evaluating the non-safety-critical performance of ADSs.


Play Guessing Game with LLM: Indirect Jailbreak Attack with Implicit Clues

arXiv.org Artificial Intelligence

With the development of LLMs, the security threats of LLMs are getting more and more attention. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks primarily utilize scenario camouflage techniques. However their explicitly mention of malicious intent will be easily recognized and defended by LLMs. In this paper, we propose an indirect jailbreak attack approach, Puzzler, which can bypass the LLM's defense strategy and obtain malicious response by implicitly providing LLMs with some clues about the original malicious query. In addition, inspired by the wisdom of "When unable to attack, defend" from Sun Tzu's Art of War, we adopt a defensive stance to gather clues about the original malicious query through LLMs. Extensive experimental results show that Puzzler achieves a query success rate of 96.6% on closed-source LLMs, which is 57.9%-82.7% higher than baselines. Furthermore, when tested against the state-of-the-art jailbreak detection approaches, Puzzler proves to be more effective at evading detection compared to baselines.


Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs

arXiv.org Artificial Intelligence

In this paper, we explore a new way for user targeting, where non-expert marketers could select their target users solely given demands in natural language form. The key to this issue is how to transform natural languages into practical structured logical languages, i.e., the structured understanding of marketer demands. Considering the impressive natural language processing ability of large language models (LLMs), we try to leverage LLMs to solve this issue. Past research indicates that the reasoning ability of LLMs can be effectively enhanced through chain-of-thought (CoT) prompting. But existing methods still have some limitations: (1) Previous methods either use simple "Let's think step by step" spells or provide fixed examples in demonstrations without considering compatibility between prompts and questions, making LLMs ineffective in some complex reasoning tasks such as structured language transformation. (2) Previous methods are often implemented in closed-source models or excessively large models, which is not suitable in industrial practical scenarios. Based on these, we propose ARALLM (i.e., Analogical Reasoning Augmented Large Language Models) consisting of two modules: Analogical Reasoning based Prompting and Reasoning-Augmented Multi-Task Model Distillation.


CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark

arXiv.org Artificial Intelligence

As the capabilities of large multimodal models (LMMs) continue to advance, evaluating the performance of LMMs emerges as an increasing need. Additionally, there is an even larger gap in evaluating the advanced knowledge and reasoning abilities of LMMs in non-English contexts such as Chinese. We introduce CMMMU, a new Chinese Massive Multi-discipline Multimodal Understanding benchmark designed to evaluate LMMs on tasks demanding college-level subject knowledge and deliberate reasoning in a Chinese context. CMMMU is inspired by and strictly follows the annotation and analysis pattern of MMMU. CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. CMMMU focuses on complex perception and reasoning with domain-specific knowledge in the Chinese context. We evaluate 11 open-source LLMs and one proprietary GPT-4V(ision). Even GPT-4V only achieves accuracies of 42%, indicating a large space for improvement. CMMMU will boost the community to build the next-generation LMMs towards expert artificial intelligence and promote the democratization of LMMs by providing diverse language contexts.


From Beginner to Expert: Modeling Medical Knowledge into General LLMs

arXiv.org Artificial Intelligence

Recently, large language model (LLM) based artificial intelligence (AI) systems have demonstrated remarkable capabilities in natural language understanding and generation. However, these models face a significant challenge when it comes to sensitive applications, such as reasoning over medical knowledge and answering medical questions in a physician-like manner. Prior studies attempted to overcome this challenge by increasing the model size (>100B) to learn more general medical knowledge, while there is still room for improvement in LLMs with smaller-scale model sizes (<100B). In this work, we start from a pre-trained general LLM model (AntGLM-10B) and fine-tune it from a medical beginner towards a medical expert (called AntGLM-Med-10B), which leverages a 3-stage optimization procedure, i.e., general medical knowledge injection, medical domain instruction tuning, and specific medical task adaptation. Our contributions are threefold: (1) We specifically investigate how to adapt a pre-trained general LLM in medical domain, especially for a specific medical task. (2) We collect and construct large-scale medical datasets for each stage of the optimization process. These datasets encompass various data types and tasks, such as question-answering, medical reasoning, multi-choice questions, and medical conversations. (3) Specifically for multi-choice questions in the medical domain, we propose a novel Verification-of-Choice approach for prompting engineering, which significantly enhances the reasoning ability of LLMs. Remarkably, by combining the above approaches, our AntGLM-Med-10B model can outperform the most of LLMs on PubMedQA, including both general and medical LLMs, even when these LLMs have larger model size.


Solving Math Word Problems via Cooperative Reasoning induced Language Models

arXiv.org Artificial Intelligence

Large-scale pre-trained language models (PLMs) bring new opportunities to challenging problems, especially those that need high-level intelligence, such as the math word problem (MWPs). However, directly applying existing PLMs to MWPs can fail as the generation process lacks sufficient supervision and thus lacks fast adaptivity as humans. We notice that human reasoning has a dual reasoning framework that consists of an immediate reaction system (system 1) and a delicate reasoning system (system 2), where the entire reasoning is determined by their interaction. This inspires us to develop a cooperative reasoning-induced PLM for solving MWPs, called Cooperative Reasoning (CoRe), resulting in a human-like reasoning architecture with system 1 as the generator and system 2 as the verifier. In our approach, the generator is responsible for generating reasoning paths, and the verifiers are used to supervise the evaluation in order to obtain reliable feedback for the generator. We evaluate our CoRe framework on several mathematical reasoning datasets and achieve decent improvement over state-of-the-art methods, up to 9.6% increase over best baselines. Our codes are available at https://github.com/TianHongZXY/CoRe


AdapterDistillation: Non-Destructive Task Composition with Knowledge Distillation

arXiv.org Artificial Intelligence

Leveraging knowledge from multiple tasks through introducing a small number of task specific parameters into each transformer layer, also known as adapters, receives much attention recently. However, adding an extra fusion layer to implement knowledge composition not only increases the inference time but also is non-scalable for some applications. To avoid these issues, we propose a two-stage knowledge distillation algorithm called AdapterDistillation. In the first stage, we extract task specific knowledge by using local data to train a student adapter. In the second stage, we distill the knowledge from the existing teacher adapters into the student adapter to help its inference. Extensive experiments on frequently asked question retrieval in task-oriented dialog systems validate the efficiency of AdapterDistillation. We show that AdapterDistillation outperforms existing algorithms in terms of accuracy, resource consumption and inference time.


Reliable Academic Conference Question Answering: A Study Based on Large Language Model

arXiv.org Artificial Intelligence

The rapid growth of computer science has led to a proliferation of research presented at academic conferences, fostering global scholarly communication. Researchers consistently seek accurate, current information about these events at all stages. This data surge necessitates an intelligent question-answering system to efficiently address researchers' queries and ensure awareness of the latest advancements. The information of conferences is usually published on their official website, organized in a semi-structured way with a lot of text. To address this need, we have developed the ConferenceQA dataset for 7 diverse academic conferences with human annotations. Firstly, we employ a combination of manual and automated methods to organize academic conference data in a semi-structured JSON format. Subsequently, we annotate nearly 100 question-answer pairs for each conference. Each pair is classified into four different dimensions. To ensure the reliability of the data, we manually annotate the source of each answer. In light of recent advancements, Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks. They have demonstrated impressive capabilities in information-seeking question answering after instruction fine-tuning, and as such, we present our conference QA study based on LLM. Due to hallucination and outdated knowledge of LLMs, we adopt retrieval based methods to enhance LLMs' question-answering abilities. We have proposed a structure-aware retrieval method, specifically designed to leverage inherent structural information during the retrieval process. Empirical validation on the ConferenceQA dataset has demonstrated the effectiveness of this method. The dataset and code are readily accessible on https://github.com/zjukg/ConferenceQA.


EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval

arXiv.org Artificial Intelligence

Artificial intelligence (AI) technologies should adhere to human norms to better serve our society and avoid disseminating harmful or misleading information, particularly in Conversational Information Retrieval (CIR). Previous work, including approaches and datasets, has not always been successful or sufficiently robust in taking human norms into consideration. To this end, we introduce a workflow that integrates ethical alignment, with an initial ethical judgment stage for efficient data screening. To address the need for ethical judgment in CIR, we present the QA-ETHICS dataset, adapted from the ETHICS benchmark, which serves as an evaluation tool by unifying scenarios and label meanings. However, each scenario only considers one ethical concept. Therefore, we introduce the MP-ETHICS dataset to evaluate a scenario under multiple ethical concepts, such as justice and Deontology. In addition, we suggest a new approach that achieves top performance in both binary and multi-label ethical judgment tasks. Our research provides a practical method for introducing ethical alignment into the CIR workflow. The data and code are available at https://github.com/wanng-ide/ealm .