Wang, Jinpeng
SessionRec: Next Session Prediction Paradigm For Generative Sequential Recommendation
Huang, Lei, Guo, Hao, Peng, Linzhi, Zhang, Long, Wang, Xiaoteng, Wang, Daoyuan, Wang, Shichao, Wang, Jinpeng, Wang, Lei, Chen, Sheng
We introduce SessionRec, a novel next-session prediction paradigm (NSPP) for generative sequential recommendation, addressing the fundamental misalignment between conventional next-item prediction paradigm (NIPP) and real-world recommendation scenarios. Unlike NIPP's item-level autoregressive generation that contradicts actual session-based user interactions, our framework introduces a session-aware representation learning through hierarchical sequence aggregation (intra/inter-session), reducing attention computation complexity while enabling implicit modeling of massive negative interactions, and a session-based prediction objective that better captures users' diverse interests through multi-item recommendation in next sessions. Moreover, we found that incorporating a rank loss for items within the session under the next session prediction paradigm can significantly improve the ranking effectiveness of generative sequence recommendation models. We also verified that SessionRec exhibits clear power-law scaling laws similar to those observed in LLMs. Extensive experiments conducted on public datasets and online A/B test in Meituan App demonstrate the effectiveness of SessionRec. The proposed paradigm establishes new foundations for developing industrial-scale generative recommendation systems through its model-agnostic architecture and computational efficiency.
Graph-Based Cross-Domain Knowledge Distillation for Cross-Dataset Text-to-Image Person Retrieval
Luo, Bingjun, Wang, Jinpeng, Zewen, Wang, Zhu, Junjie, Zhao, Xibin
Video surveillance systems are crucial components for ensuring public safety and management in smart city. As a fundamental task in video surveillance, text-to-image person retrieval aims to retrieve the target person from an image gallery that best matches the given text description. Most existing text-to-image person retrieval methods are trained in a supervised manner that requires sufficient labeled data in the target domain. However, it is common in practice that only unlabeled data is available in the target domain due to the difficulty and cost of data annotation, which limits the generalization of existing methods in practical application scenarios. To address this issue, we propose a novel unsupervised domain adaptation method, termed Graph-Based Cross-Domain Knowledge Distillation (GCKD), to learn the cross-modal feature representation for text-to-image person retrieval in a cross-dataset scenario. The proposed GCKD method consists of two main components. Firstly, a graph-based multi-modal propagation module is designed to bridge the cross-domain correlation among the visual and textual samples. Secondly, a contrastive momentum knowledge distillation module is proposed to learn the cross-modal feature representation using the online knowledge distillation strategy. By jointly optimizing the two modules, the proposed method is able to achieve efficient performance for cross-dataset text-to-image person retrieval. acExtensive experiments on three publicly available text-to-image person retrieval datasets demonstrate the effectiveness of the proposed GCKD method, which consistently outperforms the state-of-the-art baselines.
Towards Scalable Semantic Representation for Recommendation
Zhang, Taolin, Pan, Junwei, Wang, Jinpeng, Zha, Yaohua, Dai, Tao, Chen, Bin, Luo, Ruisheng, Deng, Xiaoxiang, Wang, Yuan, Yue, Ming, Jiang, Jie, Xia, Shu-Tao
With recent advances in large language models (LLMs), there has been emerging numbers of research in developing Semantic IDs based on LLMs to enhance the performance of recommendation systems. However, the dimension of these embeddings needs to match that of the ID embedding in recommendation, which is usually much smaller than the original length. Such dimension compression results in inevitable losses in discriminability and dimension robustness of the LLM embeddings, which motivates us to scale up the semantic representation. In this paper, we propose Mixture-of-Codes, which first constructs multiple independent codebooks for LLM representation in the indexing stage, and then utilizes the Semantic Representation along with a fusion module for the downstream recommendation stage. Extensive analysis and experiments demonstrate that our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations. An intuitive practice is to simply project the LLM embeddings to low-dimension embeddings via only MLPs into the recommendation systems for feature interactions.
Weakly Supervised Deep Hyperspherical Quantization for Image Retrieval
Wang, Jinpeng, Chen, Bin, Zhang, Qiang, Meng, Zaiqiao, Liang, Shangsong, Xia, Shu-Tao
Deep quantization methods have shown high efficiency on large-scale image retrieval. However, current models heavily rely on ground-truth information, hindering the application of quantization in label-hungry scenarios. A more realistic demand is to learn from inexhaustible uploaded images that are associated with informal tags provided by amateur users. Though such sketchy tags do not obviously reveal the labels, they actually contain useful semantic information for supervising deep quantization. To this end, we propose Weakly-Supervised Deep Hyperspherical Quantization (WSDHQ), which is the first work to learn deep quantization from weakly tagged images. Specifically, 1) we use word embeddings to represent the tags and enhance their semantic information based on a tag correlation graph. 2) To better preserve semantic information in quantization codes and reduce quantization error, we jointly learn semantics-preserving embeddings and supervised quantizer on hypersphere by employing a well-designed fusion layer and tailor-made loss functions. Extensive experiments show that WSDHQ can achieve state-of-art performance on weakly-supervised compact coding. Code is available at https://github.com/gimpong/AAAI21-WSDHQ.
RAT: Retrieval-Augmented Transformer for Click-Through Rate Prediction
Li, Yushen, Wang, Jinpeng, Dai, Tao, Zhu, Jieming, Yuan, Jun, Zhang, Rui, Xia, Shu-Tao
Predicting click-through rates (CTR) is a fundamental task for Web applications, where a key issue is to devise effective models for feature interactions. Current methodologies predominantly concentrate on modeling feature interactions within an individual sample, while overlooking the potential cross-sample relationships that can serve as a reference context to enhance the prediction. To make up for such deficiency, this paper develops a Retrieval-Augmented Transformer (RAT), aiming to acquire fine-grained feature interactions within and across samples. By retrieving similar samples, we construct augmented input for each target sample. We then build Transformer layers with cascaded attention to capture both intra- and cross-sample feature interactions, facilitating comprehensive reasoning for improved CTR prediction while retaining efficiency. Extensive experiments on real-world datasets substantiate the effectiveness of RAT and suggest its advantage in long-tail scenarios. The code has been open-sourced at \url{https://github.com/YushenLi807/WWW24-RAT}.
GMMFormer: Gaussian-Mixture-Model Based Transformer for Efficient Partially Relevant Video Retrieval
Wang, Yuting, Wang, Jinpeng, Chen, Bin, Zeng, Ziyun, Xia, Shu-Tao
Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a Gaussian-Mixture-Model based Transformer which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (i.e., TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer. Code is available at \url{https://github.com/huangmozhi9527/GMMFormer}.
Multi-Energy Guided Image Translation with Stochastic Differential Equations for Near-Infrared Facial Expression Recognition
Luo, Bingjun, Wang, Zewen, Wang, Jinpeng, Zhu, Junjie, Zhao, Xibin, Gao, Yue
Illumination variation has been a long-term challenge in real-world facial expression recognition(FER). Under uncontrolled or non-visible light conditions, Near-infrared (NIR) can provide a simple and alternative solution to obtain high-quality images and supplement the geometric and texture details that are missing in the visible domain. Due to the lack of existing large-scale NIR facial expression datasets, directly extending VIS FER methods to the NIR spectrum may be ineffective. Additionally, previous heterogeneous image synthesis methods are restricted by low controllability without prior task knowledge. To tackle these issues, we present the first approach, called for NIR-FER Stochastic Differential Equations (NFER-SDE), that transforms face expression appearance between heterogeneous modalities to the overfitting problem on small-scale NIR data. NFER-SDE is able to take the whole VIS source image as input and, together with domain-specific knowledge, guide the preservation of modality-invariant information in the high-frequency content of the image. Extensive experiments and ablation studies show that NFER-SDE significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.
Hypergraph-Guided Disentangled Spectrum Transformer Networks for Near-Infrared Facial Expression Recognition
Luo, Bingjun, Wang, Haowen, Wang, Jinpeng, Zhu, Junjie, Zhao, Xibin, Gao, Yue
With the strong robusticity on illumination variations, near-infrared (NIR) can be an effective and essential complement to visible (VIS) facial expression recognition in low lighting or complete darkness conditions. However, facial expression recognition (FER) from NIR images presents more challenging problem than traditional FER due to the limitations imposed by the data scale and the difficulty of extracting discriminative features from incomplete visible lighting contents. In this paper, we give the first attempt to deep NIR facial expression recognition and proposed a novel method called near-infrared facial expression transformer (NFER-Former). Specifically, to make full use of the abundant label information in the field of VIS, we introduce a Self-Attention Orthogonal Decomposition mechanism that disentangles the expression information and spectrum information from the input image, so that the expression features can be extracted without the interference of spectrum variation. We also propose a Hypergraph-Guided Feature Embedding method that models some key facial behaviors and learns the structure of the complex correlations between them, thereby alleviating the interference of inter-class similarity. Additionally, we have constructed a large NIR-VIS Facial Expression dataset that includes 360 subjects to better validate the efficiency of NFER-Former. Extensive experiments and ablation studies show that NFER-Former significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.
What Makes for Good Visual Instructions? Synthesizing Complex Visual Reasoning Instructions for Visual Instruction Tuning
Du, Yifan, Guo, Hangyu, Zhou, Kun, Zhao, Wayne Xin, Wang, Jinpeng, Wang, Chuyuan, Cai, Mingchen, Song, Ruihua, Wen, Ji-Rong
Visual instruction tuning is an essential approach to improving the zero-shot generalization capability of Multi-modal Large Language Models (MLLMs). A surge of visual instruction datasets with various focuses and characteristics have been proposed recently, enabling MLLMs to achieve surprising results on evaluation benchmarks. To develop more capable MLLMs, in this paper, we aim to investigate a more fundamental question: ``what makes for good visual instructions?''. By conducting a comprehensive empirical study, we find that instructions focused on complex visual reasoning tasks are particularly effective in improving the performance of MLLMs on evaluation benchmarks. Building upon this finding, we design a systematic approach to automatically creating high-quality complex visual reasoning instructions. Our approach employs a synthesis-complication-reformulation paradigm, leveraging multiple stages to gradually increase the complexity of the instructions while guaranteeing quality. Based on this approach, we create the synthetic visual reasoning instruction dataset consisting of 32K examples, namely ComVint, and fine-tune four MLLMs on it. Experimental results demonstrate that our dataset consistently enhances the performance of all the compared MLLMs, e.g., improving the performance of MiniGPT-4 and BLIP-2 on MME-Cognition by 32.6% and 28.8%, respectively. Our code and data are publicly available at the link: https://github.com/RUCAIBox/ComVint.
Evaluating Object Hallucination in Large Vision-Language Models
Li, Yifan, Du, Yifan, Zhou, Kun, Wang, Jinpeng, Zhao, Wayne Xin, Wen, Ji-Rong
Inspired by the superior language abilities of large language models (LLM), large vision-language models (LVLM) have been recently explored by integrating powerful LLMs for improving the performance on complex multimodal tasks. Despite the promising progress on LVLMs, we find that LVLMs suffer from the hallucination problem, i.e. they tend to generate objects that are inconsistent with the target images in the descriptions. To investigate it, this work presents the first systematic study on object hallucination of LVLMs. We conduct the evaluation experiments on several representative LVLMs, and show that they mostly suffer from severe object hallucination issue. We further discuss that the visual instructions may influence the hallucination, and find that: objects that frequently occur in the visual instructions or co-occur with the image objects, are obviously prone to be hallucinated by LVLMs. Besides, we find that existing evaluation methods might be affected by the input instructions and generation styles of LVLMs. Thus, we further design an improved evaluation method for object hallucination by proposing a polling-based query method called POPE. Experiment results demonstrate that our POPE can evaluate the object hallucination in a more stable and flexible way. Our codes and data are publicly available at https://github.com/RUCAIBox/POPE.