Wang, Jingyao
Enhancing Time Series Forecasting via Logic-Inspired Regularization
Zhang, Jianqi, Wang, Jingyao, Shen, Xingchen, Qiang, Wenwen
Time series forecasting (TSF) plays a crucial role in many applications. Transformer-based methods are one of the mainstream techniques for TSF. Existing methods treat all token dependencies equally. However, we find that the effectiveness of token dependencies varies across different forecasting scenarios, and existing methods ignore these differences, which affects their performance. This raises two issues: (1) What are effective token dependencies? (2) How can we learn effective dependencies? From a logical perspective, we align Transformer-based TSF methods with the logical framework and define effective token dependencies as those that ensure the tokens as atomic formulas (Issue 1). We then align the learning process of Transformer methods with the process of obtaining atomic formulas in logic, which inspires us to design a method for learning these effective dependencies (Issue 2). Specifically, we propose Attention Logic Regularization (Attn-L-Reg), a plug-and-play method that guides the model to use fewer but more effective dependencies by making the attention map sparse, thereby ensuring the tokens as atomic formulas and improving prediction performance. Extensive experiments and theoretical analysis confirm the effectiveness of Attn-L-Reg.
Spatio-Temporal Fuzzy-oriented Multi-Modal Meta-Learning for Fine-grained Emotion Recognition
Wang, Jingyao, Yang, Yuxuan, Qiang, Wenwen, Zheng, Changwen, Xiong, Hui
Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation
Yang, Yuxuan, Wang, Jingyao, Geng, Tao, Qiang, Wenwen, Zheng, Changwen, Sun, Fuchun
Interior design is a complex and creative discipline involving aesthetics, functionality, ergonomics, and materials science. Effective solutions must meet diverse requirements, typically producing multiple deliverables such as renderings and design drawings from various perspectives. Consequently, interior design processes are often inefficient and demand significant creativity. With advances in machine learning, generative models have emerged as a promising means of improving efficiency by creating designs from text descriptions or sketches. However, few generative works focus on interior design, leading to substantial discrepancies between outputs and practical needs, such as differences in size, spatial scope, and the lack of controllable generation quality. To address these challenges, we propose DiffDesign, a controllable diffusion model with meta priors for efficient interior design generation. Specifically, we utilize the generative priors of a 2D diffusion model pre-trained on a large image dataset as our rendering backbone. We further guide the denoising process by disentangling cross-attention control over design attributes, such as appearance, pose, and size, and introduce an optimal transfer-based alignment module to enforce view consistency. Simultaneously, we construct an interior design-specific dataset, DesignHelper, consisting of over 400 solutions across more than 15 spatial types and 15 design styles. This dataset helps fine-tune DiffDesign. Extensive experiments conducted on various benchmark datasets demonstrate the effectiveness and robustness of DiffDesign.
Neuromodulated Meta-Learning
Wang, Jingyao, Guo, Huijie, Qiang, Wenwen, Li, Jiangmeng, Zheng, Changwen, Xiong, Hui, Hua, Gang
Humans excel at adapting perceptions and actions to diverse environments, enabling efficient interaction with the external world. This adaptive capability relies on the biological nervous system (BNS), which activates different brain regions for distinct tasks. Meta-learning similarly trains machines to handle multiple tasks but relies on a fixed network structure, not as flexible as BNS. To investigate the role of flexible network structure (FNS) in meta-learning, we conduct extensive empirical and theoretical analyses, finding that model performance is tied to structure, with no universally optimal pattern across tasks. This reveals the crucial role of FNS in meta-learning, ensuring meta-learning to generate the optimal structure for each task, thereby maximizing the performance and learning efficiency of meta-learning. Motivated by this insight, we propose to define, measure, and model FNS in meta-learning. First, we define that an effective FNS should possess frugality, plasticity, and sensitivity. Then, to quantify FNS in practice, we present three measurements for these properties, collectively forming the \emph{structure constraint} with theoretical supports. Building on this, we finally propose Neuromodulated Meta-Learning (NeuronML) to model FNS in meta-learning. It utilizes bi-level optimization to update both weights and structure with the structure constraint. Extensive theoretical and empirical evaluations demonstrate the effectiveness of NeuronML on various tasks. Code is publicly available at \href{https://github.com/WangJingyao07/NeuronML}{https://github.com/WangJingyao07/NeuronML}.
Less yet robust: crucial region selection for scene recognition
Zhang, Jianqi, Wang, Mengxuan, Wang, Jingyao, Si, Lingyu, Zheng, Changwen, Xu, Fanjiang
Scene recognition, particularly for aerial and underwater images, often suffers from various types of degradation, such as blurring or overexposure. Previous works that focus on convolutional neural networks have been shown to be able to extract panoramic semantic features and perform well on scene recognition tasks. However, low-quality images still impede model performance due to the inappropriate use of high-level semantic features. To address these challenges, we propose an adaptive selection mechanism to identify the most important and robust regions with high-level features. Thus, the model can perform learning via these regions to avoid interference. implement a learnable mask in the neural network, which can filter high-level features by assigning weights to different regions of the feature matrix. We also introduce a regularization term to further enhance the significance of key high-level feature regions. Different from previous methods, our learnable matrix pays extra attention to regions that are important to multiple categories but may cause misclassification and sets constraints to reduce the influence of such regions.This is a plug-and-play architecture that can be easily extended to other methods. Additionally, we construct an Underwater Geological Scene Classification dataset to assess the effectiveness of our model. Extensive experimental results demonstrate the superiority and robustness of our proposed method over state-of-the-art techniques on two datasets.
Explicitly Modeling Universality into Self-Supervised Learning
Wang, Jingyao, Qiang, Wenwen, Song, Zeen, Si, Lingyu, Li, Jiangmeng, Zheng, Changwen, Su, Bing
The goal of universality in self-supervised learning (SSL) is to learn universal representations from unlabeled data and achieve excellent performance on all samples and tasks. However, these methods lack explicit modeling of the universality in the learning objective, and the related theoretical understanding remains limited. This may cause models to overfit in data-scarce situations and generalize poorly in real life. To address these issues, we provide a theoretical definition of universality in SSL, which constrains both the learning and evaluation universality of the SSL models from the perspective of discriminability, transferability, and generalization. Then, we propose a $\sigma$-measurement to help quantify the score of one SSL model's universality. Based on the definition and measurement, we propose a general SSL framework, called GeSSL, to explicitly model universality into SSL. It introduces a self-motivated target based on $\sigma$-measurement, which enables the model to find the optimal update direction towards universality. Extensive theoretical and empirical evaluations demonstrate the superior performance of GeSSL.
Intriguing Properties of Positional Encoding in Time Series Forecasting
Zhang, Jianqi, Wang, Jingyao, Qiang, Wenwen, Xu, Fanjiang, Zheng, Changwen, Sun, Fuchun, Xiong, Hui
Transformer-based methods have made significant progress in time series forecasting (TSF). They primarily handle two types of tokens, i.e., temporal tokens that contain all variables of the same timestamp, and variable tokens that contain all input time points for a specific variable. Transformer-based methods rely on positional encoding (PE) to mark tokens' positions, facilitating the model to perceive the correlation between tokens. However, in TSF, research on PE remains insufficient. To address this gap, we conduct experiments and uncover intriguing properties of existing PEs in TSF: (i) The positional information injected by PEs diminishes as the network depth increases; (ii) Enhancing positional information in deep networks is advantageous for improving the model's performance; (iii) PE based on the similarity between tokens can improve the model's performance. Motivated by these findings, we introduce two new PEs: Temporal Position Encoding (T-PE) for temporal tokens and Variable Positional Encoding (V-PE) for variable tokens. Both T-PE and V-PE incorporate geometric PE based on tokens' positions and semantic PE based on the similarity between tokens but using different calculations. To leverage both the PEs, we design a Transformer-based dual-branch framework named T2B-PE. It first calculates temporal tokens' correlation and variable tokens' correlation respectively and then fuses the dual-branch features through the gated unit. Extensive experiments demonstrate the superior robustness and effectiveness of T2B-PE. The code is available at: \href{https://github.com/jlu-phyComputer/T2B-PE}{https://github.com/jlu-phyComputer/T2B-PE}.
Hacking Task Confounder in Meta-Learning
Wang, Jingyao, Qiang, Wenwen, Ren, Yi, Song, Zeen, Su, Xingzhe, Zheng, Changwen
Meta-learning enables rapid generalization to new tasks by learning meta-knowledge from a variety of tasks. It is intuitively assumed that the more tasks a model learns in one training batch, the richer knowledge it acquires, leading to better generalization performance. However, contrary to this intuition, our experiments reveal an unexpected result: adding more tasks within a single batch actually degrades the generalization performance. To explain this unexpected phenomenon, we conduct a Structural Causal Model (SCM) for causal analysis. Our investigation uncovers the presence of spurious correlations between task-specific causal factors and labels in meta-learning. Furthermore, the confounding factors differ across different batches. We refer to these confounding factors as ``Task Confounders". Based on this insight, we propose a plug-and-play Meta-learning Causal Representation Learner (MetaCRL) to eliminate task confounders. It encodes decoupled causal factors from multiple tasks and utilizes an invariant-based bi-level optimization mechanism to ensure their causality for meta-learning. Extensive experiments on various benchmark datasets demonstrate that our work achieves state-of-the-art (SOTA) performance.
Learning to Sample Tasks for Meta Learning
Wang, Jingyao, Song, Zeen, Su, Xingzhe, Si, Lingyu, Dong, Hongwei, Qiang, Wenwen, Zheng, Changwen
Through experiments on various meta-learning methods, task samplers, and few-shot learning tasks, this paper arrives at three conclusions. Firstly, there are no universal task sampling strategies to guarantee the performance of meta-learning models. Secondly, task diversity can cause the models to either underfit or overfit during training. Lastly, the generalization performance of the models are influenced by task divergence, task entropy, and task difficulty. In response to these findings, we propose a novel task sampler called Adaptive Sampler (ASr). ASr is a plug-and-play task sampler that takes task divergence, task entropy, and task difficulty to sample tasks. To optimize ASr, we rethink and propose a simple and general meta-learning algorithm. Finally, a large number of empirical experiments demonstrate the effectiveness of the proposed ASr.
Towards the Sparseness of Projection Head in Self-Supervised Learning
Song, Zeen, Su, Xingzhe, Wang, Jingyao, Qiang, Wenwen, Zheng, Changwen, Sun, Fuchun
In recent years, self-supervised learning (SSL) has emerged as a promising approach for extracting valuable representations from unlabeled data. One successful SSL method is contrastive learning, which aims to bring positive examples closer while pushing negative examples apart. Many current contrastive learning approaches utilize a parameterized projection head. Through a combination of empirical analysis and theoretical investigation, we provide insights into the internal mechanisms of the projection head and its relationship with the phenomenon of dimensional collapse. Our findings demonstrate that the projection head enhances the quality of representations by performing contrastive loss in a projected subspace. Therefore, we propose an assumption that only a subset of features is necessary when minimizing the contrastive loss of a mini-batch of data. Theoretical analysis further suggests that a sparse projection head can enhance generalization, leading us to introduce SparseHead - a regularization term that effectively constrains the sparsity of the projection head, and can be seamlessly integrated with any self-supervised learning (SSL) approaches. Our experimental results validate the effectiveness of SparseHead, demonstrating its ability to improve the performance of existing contrastive methods.