Wang, Jinghua
FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data
Zhang, Yukun, Chen, Guanzhong, Xu, Zenglin, Wang, Jianyong, Zeng, Dun, Li, Junfan, Wang, Jinghua, Qi, Yuan, King, Irwin
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment. Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality. However, the sensitive nature of healthcare data often restricts individual clinical institutions from sharing data to train sufficiently generalized and unbiased ML models. Federated Learning (FL) is an emerging approach, which offers a promising solution by enabling collaborative model training across multiple participants without compromising the privacy of the individual data owners. However, to the best of our knowledge, there has been limited prior research applying FL to the cardiovascular disease domain. Moreover, existing FL benchmarks and datasets are typically simulated and may fall short of replicating the complexity of natural heterogeneity found in realistic datasets that challenges current FL algorithms. To address these gaps, this paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD. This benchmark comprises two major tasks: electrocardiogram (ECG) classification and echocardiogram (ECHO) segmentation, based on naturally scattered datasets constructed from the CVD data of seven institutions. Our extensive experiments on these datasets reveal that FL faces new challenges with real-world non-IID and long-tail data. The code and datasets of FedCVD are available https://github.com/SMILELab-FL/FedCVD.
New Solutions on LLM Acceleration, Optimization, and Application
Huang, Yingbing, Wan, Lily Jiaxin, Ye, Hanchen, Jha, Manvi, Wang, Jinghua, Li, Yuhong, Zhang, Xiaofan, Chen, Deming
Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a wide range of applications. However, the increasing size and complexity of LLMs present significant challenges in both training and deployment, leading to substantial computational and storage costs as well as heightened energy consumption. In this paper, we provide a review of recent advancements and research directions aimed at addressing these challenges and enhancing the efficiency of LLM-based systems. We begin by discussing algorithm-level acceleration techniques focused on optimizing LLM inference speed and resource utilization. We also explore LLM-hardware co-design strategies with a vision to improve system efficiency by tailoring hardware architectures to LLM requirements. Further, we delve into LLM-to-accelerator compilation approaches, which involve customizing hardware accelerators for efficient LLM deployment. Finally, as a case study to leverage LLMs for assisting circuit design, we examine LLM-aided design methodologies for an important task: High-Level Synthesis (HLS) functional verification, by creating a new dataset that contains a large number of buggy and bug-free codes, which can be essential for training LLMs to specialize on HLS verification and debugging. For each aspect mentioned above, we begin with a detailed background study, followed by the presentation of several novel solutions proposed to overcome specific challenges. We then outline future research directions to drive further advancements. Through these efforts, we aim to pave the way for more efficient and scalable deployment of LLMs across a diverse range of applications.
Exploiting Spline Models for the Training of Fully Connected Layers in Neural Network
Mo, Kanya, Zheng, Shen, Wang, Xiwei, Wang, Jinghua, Schewe, Klaus-Dieter
The fully connected (FC) layer, one of the most fundamental modules in artificial neural networks (ANN), is often considered difficult and inefficient to train due to issues including the risk of overfitting caused by its large amount of parameters. Based on previous work studying ANN from linear spline perspectives, we propose a spline-based approach that eases the difficulty of training FC layers. Given some dataset, we first obtain a continuous piece-wise linear (CPWL) fit through spline methods such as multivariate adaptive regression spline (MARS). Next, we construct an ANN model from the linear spline model and continue to train the ANN model on the dataset using gradient descent optimization algorithms. Our experimental results and theoretical analysis show that our approach reduces the computational cost, accelerates the convergence of FC layers, and significantly increases the interpretability of the resulting model (FC layers) compared with standard ANN training with random parameter initialization followed by gradient descent optimizations.