Plotting

 Wang, Jie


Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery

arXiv.org Artificial Intelligence

The DeepSeek models have shown exceptional performance in general scene understanding, question-answering (QA), and text generation tasks, owing to their efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our empirical study shows that, compared to existing general-purpose multimodal large language models, DeepSeek-VL2 performs better on complex understanding tasks in surgical scenes. Additionally, although DeepSeek-V3 is purely a language model, we find that when image tokens are directly inputted, the model demonstrates better performance on single-sentence QA tasks. However, overall, the DeepSeek models still fall short of meeting the clinical requirements for understanding surgical scenes. Under general prompts, DeepSeek models lack the ability to effectively analyze global surgical concepts and fail to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek models are not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.


WLB-LLM: Workload-Balanced 4D Parallelism for Large Language Model Training

arXiv.org Artificial Intelligence

In this work, we present WLB-LLM, a workLoad-balanced 4D parallelism for large language model training. We first thoroughly analyze the workload imbalance issue in LLM training and identify two primary sources of imbalance at the pipeline parallelism and context parallelism levels. Then, to address the imbalance issue, at the pipeline parallelism level, WLB-LLM incorporates a workload-aware variable-length document packing method to balance the computation and communication workload across micro-batches. Additionally, at the context parallelism level, WLB-LLM introduces a novel fine-grained per-document sharding strategy, ensuring each worker within a context parallelism group has an identical workload. Comprehensive experiments under different model scales demonstrate that WLB-LLM significantly mitigates the workload imbalance during 4D parallelism LLM training and achieves an average speedup of 1.23x when applying WLB-LLM in our internal LLM training framework.


R$^2$: A LLM Based Novel-to-Screenplay Generation Framework with Causal Plot Graphs

arXiv.org Artificial Intelligence

Published as a conference paper at ICLR 2025R 2: A LLM B ASED N OVEL-TO-S CREENPLAYG ENER-ATIONF RAMEWORK WITH C AUSALP LOT G RAPHS Zefeng Lin 1, Yi Xiao 1, Zhiqiang Mo 1, Qifan Zhang 1, Jie Wang 2, Jiayang Chen 2, Jiajing Zhang 2, Hui Zhang 1, Zhengyi Liu 3, Xianyong Fang 3, Xiaohua Xu 1 1 University of Science and Technology of China 2 Anhui Jianzhu University 3 Anhui University A BSTRACT Automatically adapting novels into screenplays is important for the TV, film, or opera industries to promote products with low costs. The strong performances of large language models (LLMs) in long-text generation call us to propose a LLM based framework Reader-Rewriter (R 2) for this task. However, there are two fundamental challenges here. First, the LLM hallucinations may cause inconsistent plot extraction and screenplay generation. Second, the causality-embedded plot lines should be effectively extracted for coherent rewriting. Therefore, two corresponding tactics are proposed: 1) A hallucination-aware refinement method (HAR) to iteratively discover and eliminate the affections of hallucinations; and 2) a causal plot-graph construction method (CPC) based on a greedy cycle-breaking algorithm to efficiently construct plot lines with event causalities. Recruiting those efficient techniques, R 2 utilizes two modules to mimic the human screenplay rewriting process: The Reader module adopts a sliding window and CPC to build the causal plot graphs, while the Rewriter module generates first the scene outlines based on the graphs and then the screenplays. HAR is integrated into both modules for accurate inferences of LLMs.


Apollo-MILP: An Alternating Prediction-Correction Neural Solving Framework for Mixed-Integer Linear Programming

arXiv.org Artificial Intelligence

Leveraging machine learning (ML) to predict an initial solution for mixed-integer linear programming (MILP) has gained considerable popularity in recent years. These methods predict a solution and fix a subset of variables to reduce the problem dimension. Then, they solve the reduced problem to obtain the final solutions. However, directly fixing variable values can lead to low-quality solutions or even infeasible reduced problems if the predicted solution is not accurate enough. To address this challenge, we propose an A lternating p redictio n-correction neural sol ving framewo rk (Apollo-MILP) that can identify and select accurate and reliable predicted values to fix. In each iteration, Apollo-MILP conducts a prediction step for the unfixed variables, followed by a correction step to obtain an improved solution (called reference solution) through a trust-region search. By incorporating the predicted and reference solutions, we introduce a novel U ncertainty-based E rror upper BO und (UEBO) to evaluate the uncertainty of the predicted values and fix those with high confidence. A notable feature of Apollo-MILP is the superior ability for problem reduction while preserving optimality, leading to high-quality final solutions. Experiments on commonly used benchmarks demonstrate that our proposed Apollo-MILP significantly outperforms other ML-based approaches in terms of solution quality, achieving over a 50% reduction in the solution gap. Mixed-integer linear programming (MILP) is one of the most fundamental models for combinatorial optimization with broad applications in operations research (Bixby et al., 2004), engineering (Ma et al., 2019), and daily scheduling or planning (Li et al., 2024b). However, solving large-size MILPs remains time-consuming and computationally expensive, as many are NP-hard and have exponential expansion of search spaces as instance sizes grow. To mitigate this challenge, researchers have explored a wide suite of machine learning (ML) methods (Gasse et al., 2022). In practice, MILP instances from the same scenario often share similar patterns and structures, which ML models can capture to achieve improved performance (Bengio et al., 2021). Recently, extensive research has focused on using ML models to predict solutions for MILPs. Notable approaches include Neural Diving (ND) (Nair et al., 2020; Y oon, 2021; Paulus & Krause, 2023) and Predict-and-Search (PS) (Han et al., 2023; Huang et al., 2024), as illustrated in Figure 1. Given a MILP instance, ND and PS begin by employing an ML model to predict an initial solution. ND with SelectiveNet (Nair et al., 2020) assigns fixed values to a subset of variables based on the prediction, thereby constructing a reduced MILP problem with a reduced dimensionality of decision variables. Then, ND solves the reduced problem to obtain the final solutions.


Accurate and Scalable Graph Neural Networks via Message Invariance

arXiv.org Artificial Intelligence

Message passing-based graph neural networks (GNNs) have achieved great success in many real-world applications. For a sampled mini-batch of target nodes, the message passing process is divided into two parts: message passing between nodes within the batch (MP-IB) and message passing from nodes outside the batch to those within it (MP-OB). However, MP-OB recursively relies on higher-order out-of-batch neighbors, leading to an exponentially growing computational cost with respect to the number of layers. Due to the neighbor explosion, the whole message passing stores most nodes and edges on the GPU such that many GNNs are infeasible to large-scale graphs. To address this challenge, we propose an accurate and fast mini-batch approach for large graph transductive learning, namely topological compensation (TOP), which obtains the outputs of the whole message passing solely through MP-IB, without the costly MP-OB. The major pillar of TOP is a novel concept of message invariance, which defines message-invariant transformations to convert costly MP-OB into fast MP-IB. This ensures that the modified MP-IB has the same output as the whole message passing. Experiments demonstrate that TOP is significantly faster than existing mini-batch methods by order of magnitude on vast graphs (millions of nodes and billions of edges) with limited accuracy degradation.


AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference

arXiv.org Artificial Intelligence

With the development of large language models (LLMs), efficient inference through Key-Value (KV) cache compression has attracted considerable attention, especially for long-context generation. To compress the KV cache, recent methods identify critical KV tokens through heuristic ranking with attention scores. However, these methods often struggle to accurately determine critical tokens as they neglect the \textit{temporal patterns} in attention scores, resulting in a noticeable degradation in LLM performance. To address this challenge, we propose AttentionPredictor, which is the first learning-based critical token identification approach. Specifically, AttentionPredictor learns a lightweight convolution model to capture spatiotemporal patterns and predict the next-token attention score. An appealing feature of AttentionPredictor is that it accurately predicts the attention score while consuming negligible memory. Moreover, we propose a cross-token critical cache prefetching framework that hides the token estimation time overhead to accelerate the decoding stage. By retaining most of the attention information, AttentionPredictor achieves 16$\times$ KV cache compression with comparable LLM performance, significantly outperforming the state-of-the-art.


VTD: Visual and Tactile Database for Driver State and Behavior Perception

arXiv.org Artificial Intelligence

In the domain of autonomous vehicles, the human-vehicle co-pilot system has garnered significant research attention. To address the subjective uncertainties in driver state and interaction behaviors, which are pivotal to the safety of Human-in-the-loop co-driving systems, we introduce a novel visual-tactile perception method. Utilizing a driving simulation platform, a comprehensive dataset has been developed that encompasses multi-modal data under fatigue and distraction conditions. The experimental setup integrates driving simulation with signal acquisition, yielding 600 minutes of fatigue detection data from 15 subjects and 102 takeover experiments with 17 drivers. The dataset, synchronized across modalities, serves as a robust resource for advancing cross-modal driver behavior perception algorithms.


AntLM: Bridging Causal and Masked Language Models

arXiv.org Artificial Intelligence

Causal Language Modeling (CLM) and Masked Language Modeling (MLM) are two mainstream learning paradigms based on Transformer networks, specifically the Decoder-only and Encoder-only architectures. The strengths of each paradigm in downstream tasks have shown a mix of advantages and disadvantages. In the past BabyLM Challenge 2023, although the MLM paradigm achieved the best average performance, the CLM paradigm demonstrated significantly faster convergence rates. For the BabyLM Challenge 2024, we propose a novel language modeling paradigm named $\textbf{AntLM}$, which integrates both CLM and MLM to leverage the advantages of these two classic paradigms. We chose the strict-small track and conducted experiments on two foundation models: BabyLlama, representing CLM, and LTG-BERT, representing MLM. During the training process for specific foundation models, we alternate between applying CLM or MLM training objectives and causal or bidirectional attention masks. Experimental results show that combining the two pretraining objectives leverages their strengths, enhancing overall training performance. Under the same epochs, $AntLM_{BabyLlama}$ improves Macro-average by 1%, and $AntLM_{LTG-BERT}$ achieves a 2.2% increase over the baselines.


SentiXRL: An advanced large language Model Framework for Multilingual Fine-Grained Emotion Classification in Complex Text Environment

arXiv.org Artificial Intelligence

With strong expressive capabilities in Large Language Models(LLMs), generative models effectively capture sentiment structures and deep semantics, however, challenges remain in fine-grained sentiment classification across multi-lingual and complex contexts. To address this, we propose the Sentiment Cross-Lingual Recognition and Logic Framework (SentiXRL), which incorporates two modules,an emotion retrieval enhancement module to improve sentiment classification accuracy in complex contexts through historical dialogue and logical reasoning,and a self-circulating analysis negotiation mechanism (SANM)to facilitates autonomous decision-making within a single model for classification tasks.We have validated SentiXRL's superiority on multiple standard datasets, outperforming existing models on CPED and CH-SIMS,and achieving overall better performance on MELD,Emorynlp and IEMOCAP. Notably, we unified labels across several fine-grained sentiment annotation datasets and conducted category confusion experiments, revealing challenges and impacts of class imbalance in standard datasets.


Perturbation Ontology based Graph Attention Networks

arXiv.org Artificial Intelligence

In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.