Goto

Collaborating Authors

 Wang, Jianyong


Knowledge-aware Collaborative Filtering with Pre-trained Language Model for Personalized Review-based Rating Prediction

arXiv.org Artificial Intelligence

Personalized review-based rating prediction aims at leveraging existing reviews to model user interests and item characteristics for rating prediction. Most of the existing studies mainly encounter two issues. First, the rich knowledge contained in the fine-grained aspects of each review and the knowledge graph is rarely considered to complement the pure text for better modeling user-item interactions. Second, the power of pre-trained language models is not carefully studied for personalized review-based rating prediction. To address these issues, we propose an approach named Knowledge-aware Collaborative Filtering with Pre-trained Language Model (KCF-PLM). For the first issue, to utilize rich knowledge, KCF-PLM develops a transformer network to model the interactions of the extracted aspects w.r.t. a user-item pair. For the second issue, to better represent users and items, KCF-PLM takes all the historical reviews of a user or an item as input to pre-trained language models. Moreover, KCF-PLM integrates the transformer network and the pre-trained language models through representation propagation on the knowledge graph and user-item guided attention of the aspect representations. Thus KCF-PLM combines review text, aspect, knowledge graph, and pre-trained language models together for review-based rating prediction. We conduct comprehensive experiments on several public datasets, demonstrating the effectiveness of KCF-PLM.


Can LLMs like GPT-4 outperform traditional AI tools in dementia diagnosis? Maybe, but not today

arXiv.org Artificial Intelligence

Recent investigations show that large language models (LLMs), specifically GPT-4, not only have remarkable capabilities in common Natural Language Processing (NLP) tasks but also exhibit human-level performance on various professional and academic benchmarks. However, whether GPT-4 can be directly used in practical applications and replace traditional artificial intelligence (AI) tools in specialized domains requires further experimental validation. In this paper, we explore the potential of LLMs such as GPT-4 to outperform traditional AI tools in dementia diagnosis. Comprehensive comparisons between GPT-4 and traditional AI tools are conducted to examine their diagnostic accuracy in a clinical setting. Experimental results on two real clinical datasets show that, although LLMs like GPT-4 demonstrate potential for future advancements in dementia diagnosis, they currently do not surpass the performance of traditional AI tools. The interpretability and faithfulness of GPT-4 are also evaluated by comparison with real doctors. We discuss the limitations of GPT-4 in its current state and propose future research directions to enhance GPT-4 in dementia diagnosis.


Bridging the Language Gap: Knowledge Injected Multilingual Question Answering

arXiv.org Artificial Intelligence

Question Answering (QA) is the task of automatically answering questions posed by humans in natural languages. There are different settings to answer a question, such as abstractive, extractive, boolean, and multiple-choice QA. As a popular topic in natural language processing tasks, extractive question answering task (extractive QA) has gained extensive attention in the past few years. With the continuous evolvement of the world, generalized cross-lingual transfer (G-XLT), where question and answer context are in different languages, poses some unique challenges over cross-lingual transfer (XLT), where question and answer context are in the same language. With the boost of corresponding development of related benchmarks, many works have been done to improve the performance of various language QA tasks. However, only a few works are dedicated to the G-XLT task. In this work, we propose a generalized cross-lingual transfer framework to enhance the model's ability to understand different languages. Specifically, we first assemble triples from different languages to form multilingual knowledge. Since the lack of knowledge between different languages greatly limits models' reasoning ability, we further design a knowledge injection strategy via leveraging link prediction techniques to enrich the model storage of multilingual knowledge. In this way, we can profoundly exploit rich semantic knowledge. Experiment results on real-world datasets MLQA demonstrate that the proposed method can improve the performance by a large margin, outperforming the baseline method by 13.18%/12.00% F1/EM on average.


Not Just Plain Text! Fuel Document-Level Relation Extraction with Explicit Syntax Refinement and Subsentence Modeling

arXiv.org Artificial Intelligence

Document-level relation extraction (DocRE) aims to identify semantic labels among entities within a single document. One major challenge of DocRE is to dig decisive details regarding a specific entity pair from long text. However, in many cases, only a fraction of text carries required information, even in the manually labeled supporting evidence. To better capture and exploit instructive information, we propose a novel expLicit syntAx Refinement and Subsentence mOdeliNg based framework (LARSON). By introducing extra syntactic information, LARSON can model subsentences of arbitrary granularity and efficiently screen instructive ones. Moreover, we incorporate refined syntax into text representations which further improves the performance of LARSON. Experimental results on three benchmark datasets (DocRED, CDR, and GDA) demonstrate that LARSON significantly outperforms existing methods.


Toward a Unified Framework for Unsupervised Complex Tabular Reasoning

arXiv.org Artificial Intelligence

Structured tabular data exist across nearly all fields. Reasoning task over these data aims to answer questions or determine the truthiness of hypothesis sentences by understanding the semantic meaning of a table. While previous works have devoted significant efforts to the tabular reasoning task, they always assume there are sufficient labeled data. However, constructing reasoning samples over tables (and related text) is labor-intensive, especially when the reasoning process is complex. When labeled data is insufficient, the performance of models will suffer an unendurable decline. In this paper, we propose a unified framework for unsupervised complex tabular reasoning (UCTR), which generates sufficient and diverse synthetic data with complex logic for tabular reasoning tasks, assuming no human-annotated data at all. We first utilize a random sampling strategy to collect diverse programs of different types and execute them on tables based on a "Program-Executor" module. To bridge the gap between the programs and natural language sentences, we design a powerful "NL-Generator" module to generate natural language sentences with complex logic from these programs. Since a table often occurs with its surrounding texts, we further propose novel "Table-to-Text" and "Text-to-Table" operators to handle joint table-text reasoning scenarios. This way, we can adequately exploit the unlabeled table resources to obtain a well-performed reasoning model under an unsupervised setting. Our experiments cover different tasks (question answering and fact verification) and different domains (general and specific), showing that our unsupervised methods can achieve at most 93% performance compared to supervised models. We also find that it can substantially boost the supervised performance in low-resourced domains as a data augmentation technique. Our code is available at https://github.com/leezythu/UCTR.


Joint Open Knowledge Base Canonicalization and Linking

arXiv.org Artificial Intelligence

Open Information Extraction (OIE) methods extract a large number of OIE triples (noun phrase, relation phrase, noun phrase) from text, which compose large Open Knowledge Bases (OKBs). However, noun phrases (NPs) and relation phrases (RPs) in OKBs are not canonicalized and often appear in different paraphrased textual variants, which leads to redundant and ambiguous facts. To address this problem, there are two related tasks: OKB canonicalization (i.e., convert NPs and RPs to canonicalized form) and OKB linking (i.e., link NPs and RPs with their corresponding entities and relations in a curated Knowledge Base (e.g., DBPedia). These two tasks are tightly coupled, and one task can benefit significantly from the other. However, they have been studied in isolation so far. In this paper, we explore the task of joint OKB canonicalization and linking for the first time, and propose a novel framework JOCL based on factor graph model to make them reinforce each other. JOCL is flexible enough to combine different signals from both tasks, and able to extend to fit any new signals. A thorough experimental study over two large scale OIE triple data sets shows that our framework outperforms all the baseline methods for the task of OKB canonicalization (OKB linking) in terms of average F1 (accuracy).


Effective Few-Shot Named Entity Linking by Meta-Learning

arXiv.org Artificial Intelligence

Entity linking aims to link ambiguous mentions to their corresponding entities in a knowledge base, which is significant and fundamental for various downstream applications, e.g., knowledge base completion, question answering, and information extraction. While great efforts have been devoted to this task, most of these studies follow the assumption that large-scale labeled data is available. However, when the labeled data is insufficient for specific domains due to labor-intensive annotation work, the performance of existing algorithms will suffer an intolerable decline. In this paper, we endeavor to solve the problem of few-shot entity linking, which only requires a minimal amount of in-domain labeled data and is more practical in real situations. Specifically, we firstly propose a novel weak supervision strategy to generate non-trivial synthetic entity-mention pairs based on mention rewriting. Since the quality of the synthetic data has a critical impact on effective model training, we further design a meta-learning mechanism to assign different weights to each synthetic entity-mention pair automatically. Through this way, we can profoundly exploit rich and precious semantic information to derive a well-trained entity linking model under the few-shot setting. The experiments on real-world datasets show that the proposed method can extensively improve the state-of-the-art few-shot entity linking model and achieve impressive performance when only a small amount of labeled data is available. Moreover, we also demonstrate the outstanding ability of the model's transferability.


Scalable Rule-Based Representation Learning for Interpretable Classification

arXiv.org Artificial Intelligence

Rule-based models, e.g., decision trees, are widely used in scenarios demanding high model interpretability for their transparent inner structures and good model expressivity. However, rule-based models are hard to optimize, especially on large data sets, due to their discrete parameters and structures. Ensemble methods and fuzzy/soft rules are commonly used to improve performance, but they sacrifice the model interpretability. To obtain both good scalability and interpretability, we propose a new classifier, named Rule-based Representation Learner (RRL), that automatically learns interpretable non-fuzzy rules for data representation and classification. To train the non-differentiable RRL effectively, we project it to a continuous space and propose a novel training method, called Gradient Grafting, that can directly optimize the discrete model using gradient descent. An improved design of logical activation functions is also devised to increase the scalability of RRL and enable it to discretize the continuous features end-to-end. Exhaustive experiments on nine small and four large data sets show that RRL outperforms the competitive interpretable approaches and can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios. Our code is available at: https://github.com/12wang3/rrl.


Entity Linking Meets Deep Learning: Techniques and Solutions

arXiv.org Artificial Intelligence

Entity linking (EL) is the process of linking entity mentions appearing in web text with their corresponding entities in a knowledge base. EL plays an important role in the fields of knowledge engineering and data mining, underlying a variety of downstream applications such as knowledge base population, content analysis, relation extraction, and question answering. In recent years, deep learning (DL), which has achieved tremendous success in various domains, has also been leveraged in EL methods to surpass traditional machine learning based methods and yield the state-of-the-art performance. In this survey, we present a comprehensive review and analysis of existing DL based EL methods. First of all, we propose a new taxonomy, which organizes existing DL based EL methods using three axes: embedding, feature, and algorithm. Then we systematically survey the representative EL methods along the three axes of the taxonomy. Later, we introduce ten commonly used EL data sets and give a quantitative performance analysis of DL based EL methods over these data sets. Finally, we discuss the remaining limitations of existing methods and highlight some promising future directions.


Learning Dual Dynamic Representations on Time-Sliced User-Item Interaction Graphs for Sequential Recommendation

arXiv.org Artificial Intelligence

Sequential Recommendation aims to recommend items that a target user will interact with in the near future based on the historically interacted items. While modeling temporal dynamics is crucial for sequential recommendation, most of the existing studies concentrate solely on the user side while overlooking the sequential patterns existing in the counterpart, i.e., the item side. Although a few studies investigate the dynamics involved in the dual sides, the complex user-item interactions are not fully exploited from a global perspective to derive dynamic user and item representations. In this paper, we devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe). To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice and exploits time-sliced graph neural networks to learn user and item representations. Moreover, to enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices based on temporal point process. Comprehensive experiments on three public real-world datasets demonstrate DRL-SRe outperforms the state-of-the-art sequential recommendation models with a large margin.