Goto

Collaborating Authors

 Wang, Jianyong


COMM:Concentrated Margin Maximization for Robust Document-Level Relation Extraction

arXiv.org Artificial Intelligence

Document-level relation extraction (DocRE) is the process of identifying and extracting relations between entities that span multiple sentences within a document. Due to its realistic settings, DocRE has garnered increasing research attention in recent years. Previous research has mostly focused on developing sophisticated encoding models to better capture the intricate patterns between entity pairs. While these advancements are undoubtedly crucial, an even more foundational challenge lies in the data itself. The complexity inherent in DocRE makes the labeling process prone to errors, compounded by the extreme sparsity of positive relation samples, which is driven by both the limited availability of positive instances and the broad diversity of positive relation types. These factors can lead to biased optimization processes, further complicating the task of accurate relation extraction. Recognizing these challenges, we have developed a robust framework called \textit{\textbf{COMM}} to better solve DocRE. \textit{\textbf{COMM}} operates by initially employing an instance-aware reasoning method to dynamically capture pertinent information of entity pairs within the document and extract relational features. Following this, \textit{\textbf{COMM}} takes into account the distribution of relations and the difficulty of samples to dynamically adjust the margins between prediction logits and the decision threshold, a process we call Concentrated Margin Maximization. In this way, \textit{\textbf{COMM}} not only enhances the extraction of relevant relational features but also boosts DocRE performance by addressing the specific challenges posed by the data. Extensive experiments and analysis demonstrate the versatility and effectiveness of \textit{\textbf{COMM}}, especially its robustness when trained on low-quality data (achieves \textgreater 10\% performance gains).


FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling

arXiv.org Artificial Intelligence

Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12$\times$ speedup over the state-of-the-art speculative sampling method EAGLE-2. Code available at https://github.com/thunlp/FR-Spec.


Multimodal Latent Language Modeling with Next-Token Diffusion

arXiv.org Artificial Intelligence

Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop $\sigma$-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.


FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data

arXiv.org Artificial Intelligence

Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment. Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality. However, the sensitive nature of healthcare data often restricts individual clinical institutions from sharing data to train sufficiently generalized and unbiased ML models. Federated Learning (FL) is an emerging approach, which offers a promising solution by enabling collaborative model training across multiple participants without compromising the privacy of the individual data owners. However, to the best of our knowledge, there has been limited prior research applying FL to the cardiovascular disease domain. Moreover, existing FL benchmarks and datasets are typically simulated and may fall short of replicating the complexity of natural heterogeneity found in realistic datasets that challenges current FL algorithms. To address these gaps, this paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD. This benchmark comprises two major tasks: electrocardiogram (ECG) classification and echocardiogram (ECHO) segmentation, based on naturally scattered datasets constructed from the CVD data of seven institutions. Our extensive experiments on these datasets reveal that FL faces new challenges with real-world non-IID and long-tail data. The code and datasets of FedCVD are available https://github.com/SMILELab-FL/FedCVD.


You Only Cache Once: Decoder-Decoder Architectures for Language Models

arXiv.org Artificial Intelligence

We introduce a decoder-decoder architecture, YOCO, for large language models, which only caches key-value pairs once. It consists of two components, i.e., a cross-decoder stacked upon a self-decoder. The self-decoder efficiently encodes global key-value (KV) caches that are reused by the cross-decoder via cross-attention. The overall model behaves like a decoder-only Transformer, although YOCO only caches once. The design substantially reduces GPU memory demands, yet retains global attention capability. Additionally, the computation flow enables prefilling to early exit without changing the final output, thereby significantly speeding up the prefill stage. Experimental results demonstrate that YOCO achieves favorable performance compared to Transformer in various settings of scaling up model size and number of training tokens. We also extend YOCO to 1M context length with near-perfect needle retrieval accuracy. The profiling results show that YOCO improves inference memory, prefill latency, and throughput by orders of magnitude across context lengths and model sizes. Code is available at https://aka.ms/YOCO.


Learning Interpretable Rules for Scalable Data Representation and Classification

arXiv.org Artificial Intelligence

Rule-based models, e.g., decision trees, are widely used in scenarios demanding high model interpretability for their transparent inner structures and good model expressivity. However, rule-based models are hard to optimize, especially on large data sets, due to their discrete parameters and structures. Ensemble methods and fuzzy/soft rules are commonly used to improve performance, but they sacrifice the model interpretability. To obtain both good scalability and interpretability, we propose a new classifier, named Rule-based Representation Learner (RRL), that automatically learns interpretable non-fuzzy rules for data representation and classification. To train the non-differentiable RRL effectively, we project it to a continuous space and propose a novel training method, called Gradient Grafting, that can directly optimize the discrete model using gradient descent. A novel design of logical activation functions is also devised to increase the scalability of RRL and enable it to discretize the continuous features end-to-end. Exhaustive experiments on ten small and four large data sets show that RRL outperforms the competitive interpretable approaches and can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios. Our code is available at: https://github.com/12wang3/rrl.


FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base Question Answering

arXiv.org Artificial Intelligence

Knowledge base question answering (KBQA) is a critical yet challenging task due to the vast number of entities within knowledge bases and the diversity of natural language questions posed by users. Unfortunately, the performance of most KBQA models tends to decline significantly in real-world scenarios where high-quality annotated data is insufficient. To mitigate the burden associated with manual annotation, we introduce FlexKBQA by utilizing Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task. Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base, which are subsequently converted into natural language questions via LLMs. This synthetic dataset facilitates training a specialized lightweight model for the KB. Additionally, to reduce the barriers of distribution shift between synthetic data and real user questions, FlexKBQA introduces an executionguided self-training method to iterative leverage unlabeled user questions. Furthermore, we explore harnessing the inherent reasoning capability of LLMs to enhance the entire framework. Consequently, FlexKBQA delivers substantial flexibility, encompassing data annotation, deployment, and being domain agnostic. Through extensive experiments on GrailQA, WebQSP, and KQA Pro, we observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations, surpassing all previous baselines and even approaching the performance of supervised models, achieving a remarkable 93% performance relative to the fully-supervised models. We posit that FlexKBQA represents a significant advancement towards exploring better integration of large and lightweight models. The code is open-sourced.


Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning

arXiv.org Artificial Intelligence

Knowledge tracing (KT) plays a crucial role in computer-aided education and intelligent tutoring systems, aiming to assess students' knowledge proficiency by predicting their future performance on new questions based on their past response records. While existing deep learning knowledge tracing (DLKT) methods have significantly improved prediction accuracy and achieved state-of-the-art results, they often suffer from a lack of interpretability. To address this limitation, current approaches have explored incorporating psychological influences to achieve more explainable predictions, but they tend to overlook the potential influences of historical responses. In fact, understanding how models make predictions based on response influences can enhance the transparency and trustworthiness of the knowledge tracing process, presenting an opportunity for a new paradigm of interpretable KT. However, measuring unobservable response influences is challenging. In this paper, we resort to counterfactual reasoning that intervenes in each response to answer \textit{what if a student had answered a question incorrectly that he/she actually answered correctly, and vice versa}. Based on this, we propose RCKT, a novel response influence-based counterfactual knowledge tracing framework. RCKT generates response influences by comparing prediction outcomes from factual sequences and constructed counterfactual sequences after interventions. Additionally, we introduce maximization and inference techniques to leverage accumulated influences from different past responses, further improving the model's performance and credibility. Extensive experimental results demonstrate that our RCKT method outperforms state-of-the-art knowledge tracing methods on four datasets against six baselines, and provides credible interpretations of response influences.


Graph-enhanced Optimizers for Structure-aware Recommendation Embedding Evolution

arXiv.org Artificial Intelligence

Embedding plays a critical role in modern recommender systems because they are virtual representations of real-world entities and the foundation for subsequent decision models. In this paper, we propose a novel embedding update mechanism, Structure-aware Embedding Evolution (SEvo for short), to encourage related nodes to evolve similarly at each step. Unlike GNN (Graph Neural Network) that typically serves as an intermediate part, SEvo is able to directly inject the graph structure information into embedding with negligible computational overhead in training. The convergence properties of SEvo as well as its possible variants are theoretically analyzed to justify the validity of the designs. Moreover, SEvo can be seamlessly integrated into existing optimizers for state-of-the-art performance. In particular, SEvo-enhanced AdamW with moment estimate correction demonstrates consistent improvements across a spectrum of models and datasets, suggesting a novel technical route to effectively utilize graph structure information beyond explicit GNN modules.


Retentive Network: A Successor to Transformer for Large Language Models

arXiv.org Artificial Intelligence

In this work, we propose Retentive Network (RetNet) as a foundation architecture for large language models, simultaneously achieving training parallelism, low-cost inference, and good performance. We theoretically derive the connection between recurrence and attention. Then we propose the retention mechanism for sequence modeling, which supports three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent. Specifically, the parallel representation allows for training parallelism. The recurrent representation enables low-cost $O(1)$ inference, which improves decoding throughput, latency, and GPU memory without sacrificing performance. The chunkwise recurrent representation facilitates efficient long-sequence modeling with linear complexity, where each chunk is encoded parallelly while recurrently summarizing the chunks. Experimental results on language modeling show that RetNet achieves favorable scaling results, parallel training, low-cost deployment, and efficient inference. The intriguing properties make RetNet a strong successor to Transformer for large language models. Code will be available at https://aka.ms/retnet.