Wang, Jianyi
Is Your Text-to-Image Model Robust to Caption Noise?
Yu, Weichen, Yang, Ziyan, Lin, Shanchuan, Zhao, Qi, Wang, Jianyi, Gui, Liangke, Fredrikson, Matt, Jiang, Lu
In text-to-image (T2I) generation, a prevalent training technique involves utilizing Vision Language Models (VLMs) for image re-captioning. Even though VLMs are known to exhibit hallucination, generating descriptive content that deviates from the visual reality, the ramifications of such caption hallucinations on T2I generation performance remain under-explored. Through our empirical investigation, we first establish a comprehensive dataset comprising VLM-generated captions, and then systematically analyze how caption hallucination influences generation outcomes. Our findings reveal that (1) the disparities in caption quality persistently impact model outputs during fine-tuning. (2) VLMs confidence scores serve as reliable indicators for detecting and characterizing noise-related patterns in the data distribution. (3) even subtle variations in caption fidelity have significant effects on the quality of learned representations. These findings collectively emphasize the profound impact of caption quality on model performance and highlight the need for more sophisticated robust training algorithm in T2I. In response to these observations, we propose a approach leveraging VLM confidence score to mitigate caption noise, thereby enhancing the robustness of T2I models against hallucination in caption.
Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence
Song, Yuhang, Wang, Jianyi, Lukasiewicz, Thomas, Xu, Zhenghua, Xu, Mai, Ding, Zihan, Wu, Lianlong
Learning agents that are not only capable of taking tests but are also innovating are becoming a hot topic in artificial intelligence (AI). One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, the existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logic and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided games set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. Code for the games, building toolkit and baselines are released at https://github.com/YuhangSong/Arena-BuildingToolkit and https://github.com/YuhangSong/Arena-Baselines.
Mega-Reward: Achieving Human-Level Play without Extrinsic Rewards
Song, Yuhang, Wang, Jianyi, Lukasiewicz, Thomas, Xu, Zhenghua, Zhang, Shangtong, Xu, Mai
Intrinsic rewards are introduced to simulate how human intelligence works; they are usually evaluated by intrinsically-motivated play, i.e., playing games without extrinsic rewards but evaluated with extrinsic rewards. However, none of the existing intrinsic reward approaches can achieve human-level performance under this very challenging setting of intrinsically-motivated play. In this work, we propose a novel megalomania-driven intrinsic reward (called \emph{mega-reward}), which, to our knowledge, is the first approach that achieves human-level performance in intrinsically-motivated play. Intuitively, mega-reward comes from the observation that infants' intelligence develops when they try to gain more control on entities in an environment; therefore, mega-reward aims to maximize the control capabilities of agents on given entities in a given environment. To formalize mega-reward, a relational transition model is proposed to bridge the gaps between direct and latent control. Experimental studies show that mega-reward can (i) greatly outperform all state-of-the-art intrinsic reward approaches, (ii) generally achieves the same level of performance as Ex-PPO and professional human-level scores; and (iii) has also superior performance when it is incorporated with extrinsic reward.
Diversity-Driven Extensible Hierarchical Reinforcement Learning
Song, Yuhang, Wang, Jianyi, Lukasiewicz, Thomas, Xu, Zhenghua, Xu, Mai
Hierarchical reinforcement learning (HRL) has recently shown promising advances on speeding up learning, improving the exploration, and discovering intertask transferable skills. Most recent works focus on HRL with two levels, i.e., a master policy manipulates subpolicies, which in turn manipulate primitive actions. However, HRL with multiple levels is usually needed in many real-world scenarios, whose ultimate goals are highly abstract, while their actions are very primitive. Therefore, in this paper, we propose a diversity-driven extensible HRL (DEHRL), where an extensible and scalable framework is built and learned levelwise to realize HRL with multiple levels. DEHRL follows a popular assumption: diverse subpolicies are useful, i.e., subpolicies are believed to be more useful if they are more diverse. However, existing implementations of this diversity assumption usually have their own drawbacks, which makes them inapplicable to HRL with multiple levels. Consequently, we further propose a novel diversity-driven solution to achieve this assumption in DEHRL. Experimental studies evaluate DEHRL with five baselines from four perspectives in two domains; the results show that DEHRL outperforms the state-of-the-art baselines in all four aspects.