Goto

Collaborating Authors

 Wang, Jianwu


Correlation to Causation: A Causal Deep Learning Framework for Arctic Sea Ice Prediction

arXiv.org Artificial Intelligence

Building upon the previously introduced MVGC and PCMCI+ algorithms, we applied these methods to identify key causal variables of Arctic sea ice dynamics. For both daily and monthly datasets, MVGC identified all variables except Sea Surface T emperature (SST) as causal features. This result underscores the broad influence of atmospheric and oceanic variables on Arctic sea ice. PCMCI+, known for its robustness in handling high-dimensional and autocorrelated time series data, provided a more refined identification of causal features. For the daily dataset, PCMCI+ highlighted longwave radiation, snowfall, sea surface salinity (SSS), surface pressure, and SIE itself as the primary causal factors. For the monthly dataset, the identified causal features were longwave radiation, SST, and SIE . These results suggest temporal and spatial differences in the causal relationships influencing SIE dynamics across daily and monthly timescales. Figure 4 shows the causal graphs generated by PCMCI+ for daily and monthly datasets, highlighting the direct causal influences of key variables on Arctic SIE. The identified features guided the selection of input variables for the GRU-LSTM model, ensuring that the model leveraged causally significant information for prediction.


Building Machine Learning Challenges for Anomaly Detection in Science

arXiv.org Artificial Intelligence

Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.


Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference

arXiv.org Artificial Intelligence

Spatial interference (SI) occurs when the treatment at one location affects the outcomes at other locations. Accounting for spatial interference in spatiotemporal settings poses further challenges as interference violates the stable unit treatment value assumption, making it infeasible for standard causal inference methods to quantify the effects of time-varying treatment at spatially varying outcomes. In this paper, we first formalize the concept of spatial interference in case of time-varying treatment assignments by extending the potential outcome framework under the assumption of no unmeasured confounding. We then propose our deep learning based potential outcome model for spatiotemporal causal inference. We utilize latent factor modeling to reduce the bias due to time-varying confounding while leveraging the power of U-Net architecture to capture global and local spatial interference in data over time. Our causal estimators are an extension of average treatment effect (ATE) for estimating direct (DATE) and indirect effects (IATE) of spatial interference on treated and untreated data. Being the first of its kind deep learning based spatiotemporal causal inference technique, our approach shows advantages over several baseline methods based on the experiment results on two synthetic datasets, with and without spatial interference. Our results on real-world climate dataset also align with domain knowledge, further demonstrating the effectiveness of our proposed method.


Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods

arXiv.org Artificial Intelligence

This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art methods introduced for time-series and spatiotemporal causal analysis along with their strengths and limitations. The paper further describes the existing applications of several methods for answering specific Earth Science questions such as extreme weather events, sea level rise, teleconnections etc. This survey paper can serve as a primer for Data Science researchers interested in data-driven causal study as we share a list of resources, such as Earth Science datasets (synthetic, simulated and observational data) and open source tools for causal analysis. It will equally benefit the Earth Science community interested in taking an AI-driven approach to study the causality of different dynamic and thermodynamic processes as we present the open challenges and opportunities in performing causality-based Earth Science study.


TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data

arXiv.org Artificial Intelligence

The growing availability and importance of time series data across various domains, including environmental science, epidemiology, and economics, has led to an increasing need for time-series causal discovery methods that can identify the intricate relationships in the non-stationary, non-linear, and often noisy real world data. However, the majority of current time series causal discovery methods assume stationarity and linear relations in data, making them infeasible for the task. Further, the recent deep learning-based methods rely on the traditional causal structure learning approaches making them computationally expensive. In this paper, we propose a Time-Series Causal Neural Network (TS-CausalNN) - a deep learning technique to discover contemporaneous and lagged causal relations simultaneously. Our proposed architecture comprises (i) convolutional blocks comprising parallel custom causal layers, (ii) acyclicity constraint, and (iii) optimization techniques using the augmented Lagrangian approach. In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data. Through experiments on multiple synthetic and real world datasets, we demonstrate the empirical proficiency of our proposed approach as compared to several state-of-the-art methods. The inferred graphs for the real world dataset are in good agreement with the domain understanding.


MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval

arXiv.org Artificial Intelligence

In the realm of Earth science, effective cloud property retrieval, encompassing cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction, remains pivotal. Traditional methodologies necessitate distinct models for each sensor instrument due to their unique spectral characteristics. Recent strides in Earth Science research have embraced machine learning and deep learning techniques to extract features from satellite datasets' spectral observations. However, prevailing approaches lack novel architectures accounting for hierarchical relationships among retrieval tasks. Moreover, considering the spectral diversity among existing sensors, the development of models with robust generalization capabilities over different sensor datasets is imperative. Surprisingly, there is a dearth of methodologies addressing the selection of an optimal model for diverse datasets. In response, this paper introduces MT-HCCAR, an end-to-end deep learning model employing multi-task learning to simultaneously tackle cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). The MT-HCCAR integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Additionally, a comprehensive model selection method rooted in K-fold cross-validation, one standard error rule, and two introduced performance scores is proposed to select the optimal model over three simulated satellite datasets OCI, VIIRS, and ABI. The experiments comparing MT-HCCAR with baseline methods, the ablation studies, and the model selection affirm the superiority and the generalization capabilities of MT-HCCAR.


Quantifying Causes of Arctic Amplification via Deep Learning based Time-series Causal Inference

arXiv.org Artificial Intelligence

The warming of the Arctic, also known as Arctic amplification, is led by several atmospheric and oceanic drivers. However, the details of its underlying thermodynamic causes are still unknown. Inferring the causal effects of atmospheric processes on sea ice melt using fixed treatment effect strategies leads to unrealistic counterfactual estimations. Such models are also prone to bias due to time-varying confoundedness. Further, the complex non-linearity in Earth science data makes it infeasible to perform causal inference using existing marginal structural techniques. In order to tackle these challenges, we propose TCINet - time-series causal inference model to infer causation under continuous treatment using recurrent neural networks and a novel probabilistic balancing technique. Through experiments on synthetic and observational data, we show how our research can substantially improve the ability to quantify leading causes of Arctic sea ice melt, further paving paths for causal inference in observational Earth science.


Deep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Data

arXiv.org Artificial Intelligence

Clustering high-dimensional spatiotemporal data using an unsupervised approach is a challenging problem for many data-driven applications. Existing state-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a novel algorithm for the temporal clustering of high-dimensional spatiotemporal data using an unsupervised deep learning method. Inspired by the U-net architecture, DSC utilizes an autoencoder integrating CNN-RNN layers to learn latent representations of the spatiotemporal data. DSC also includes a unique layer for cluster assignment on latent representations that uses the Student's t-distribution. By optimizing the clustering loss and data reconstruction loss simultaneously, the algorithm gradually improves clustering assignments and the nonlinear mapping between low-dimensional latent feature space and high-dimensional original data space. A multivariate spatiotemporal climate dataset is used to evaluate the efficacy of the proposed method. Our extensive experiments show our approach outperforms both conventional and deep learning-based unsupervised clustering algorithms. Additionally, we compared the proposed model with its various variants (CNN encoder, CNN autoencoder, CNN-RNN encoder, CNN-RNN autoencoder, etc.) to get insight into using both the CNN and RNN layers in the autoencoder, and our proposed technique outperforms these variants in terms of clustering results.


Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow Prediction

arXiv.org Artificial Intelligence

Inter-city highway transportation is significant for urban life. As one of the key functions in intelligent transportation system (ITS), traffic evaluation always plays significant role nowadays, and daily traffic flow prediction still faces challenges at network-wide toll stations. On the one hand, the data imbalance in practice among various locations deteriorates the performance of prediction. On the other hand, complex correlative spatio-temporal factors cannot be comprehensively employed in long-term duration. In this paper, a prediction method is proposed for daily traffic flow in highway domain through spatio-temporal deep learning. In our method, data normalization strategy is used to deal with data imbalance, due to long-tail distribution of traffic flow at network-wide toll stations. And then, based on graph convolutional network, we construct networks in distinct semantics to capture spatio-temporal features. Beside that, meteorology and calendar features are used by our model in the full connection stage to extra external characteristics of traffic flow. By extensive experiments and case studies in one Chinese provincial highway, our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.


MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic Sea Ice Forecasting

arXiv.org Artificial Intelligence

Arctic amplification has altered the climate patterns both regionally and globally, resulting in more frequent and more intense extreme weather events in the past few decades. The essential part of Arctic amplification is the unprecedented sea ice loss as demonstrated by satellite observations. Accurately forecasting Arctic sea ice from sub-seasonal to seasonal scales has been a major research question with fundamental challenges at play. In addition to physics-based Earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven approaches to study sea ice variations, we propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC). The model uses an encoder-decoder architecture with skip connections and processes multi-temporal input streams to regenerate spatial maps at future timesteps. Using bi-monthly and monthly satellite retrieved sea ice data from NSIDC as well as atmospheric and oceanic variables from ERA5 reanalysis product during 1979-2021, we show that our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.